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EBM I

Definition: Energy-Based models (EBMs) are families of parametrized pdf

ρθ(x) = Z−1
θ e−Uθ(x); Zθ =

∫
Rd

e−Uθ(x)dx

where Uθ :Rd → [0,∞) is the energy function. The target density ρ∗(x) we would like to fit
is known just through samples {xi∗}n

i=1 ∼ ρ∗(x).

Training: gradient descent over cross entropy (i.e. over KL divergence up to a constant)

θ̇(t) =−∂θH(ρθ,ρ∗) =−E∗[∂θUθ]︸ ︷︷ ︸
from data

+ Eθ[∂θUθ]︸ ︷︷ ︸
samples from ρθ

Possible solution: generate samples from ρθ to compute Eθ[∂θUθ], using for instance ULA,
MALA, Gibbs sampling, etc.
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EBM II

Mixing: at θ fixed, ULA is the Markov process

Xk+1 = Xk −h∇Uθ(Xk)+
p

2hξk, X0 ∼ ρ0

for k ≥ 0, h > 0 and {ξk}k∈N0 are independent N (0d, Id).

We have X∞ ∼ ρθ but given
Xk ∼ ρk(x)

Eθ[∂θUθ] ̸=
∫
∂θUθ(x)ρk(x)dx

for any k <∞. Even less controlled along EBM training since θ = θk depends on time.

State of the Art: Constrastive Divergence (ρ0 = ρ∗ with reinitialization of the chain at ρ∗)
and Persistent Contrastive Divergence (ρ0 = ρ∗). CD effectively performs GD on Fisher
divergence [Domingo-Enrich et al., 2021].
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EBM III

Main result: given the dicrete-time dynamical system{
Xk+1 = Xk −h∇Uθk (Xk)+

p
2hξk, X0 ∼ ρθ0 ,

Ak+1 = Ak −αk+1(Xk+1,Xk)+αk(Xk,Xk+1), A0 = 0,

with
αk(x,y) = Uθk (x)+ 1

2 (y−x) ·∇Uθk (x)+ 1
4 h|∇Uθk (x)|2
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for all k ∈N0, the following equalities hold

Eθk [∂θUθk ] = E[∂θUθk (Xk)eAk ]

E[eAk ]
, Zθk = Zθ0E

[
eAk

]
where E[·] is the expectation w.r.t. the law of the joint process (Xk,Ak) ∈Rd ×R

Speaker: D. Carbone NeurIPS 2023 4 / 8



EBM III

Main result: given the dicrete-time dynamical system{
Xk+1 = Xk −h∇Uθk (Xk)+

p
2hξk, X0 ∼ ρθ0 ,

Ak+1 = Ak −αk+1(Xk+1,Xk)+αk(Xk,Xk+1), A0 = 0,

with
αk(x,y) = Uθk (x)+ 1

2 (y−x) ·∇Uθk (x)+ 1
4 h|∇Uθk (x)|2

for all k ∈N0, the following equalities hold

Eθk [∂θUθk ] = E[∂θUθk (Xk)eAk ]

E[eAk ]
, Zθk = Zθ0E

[
eAk

]
where E[·] is the expectation w.r.t. the law of the joint process (Xk,Ak) ∈Rd ×R

Speaker: D. Carbone NeurIPS 2023 4 / 8



EBM III

Main result: given the dicrete-time dynamical system{
Xk+1 = Xk −h∇Uθk (Xk)+

p
2hξk, X0 ∼ ρθ0 ,

Ak+1 = Ak −αk+1(Xk+1,Xk)+αk(Xk,Xk+1), A0 = 0,

with
αk(x,y) = Uθk (x)+ 1

2 (y−x) ·∇Uθk (x)+ 1
4 h|∇Uθk (x)|2

for all k ∈N0, the following equalities hold

Eθk [∂θUθk ] = E[∂θUθk (Xk)eAk ]

E[eAk ]
, Zθk = Zθ0E

[
eAk

]︸ ︷︷ ︸
Jarzynski identity

where E[·] is the expectation w.r.t. the law of the joint process (Xk,Ak) ∈Rd ×R

Speaker: D. Carbone NeurIPS 2023 4 / 8



Numerical Experiments I
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Gaussian Mixture: Algo 1 is our proposal and Eq (21) is the estimation of KL using Ak. PCD
and CD does not fit the right relative mass. PCD shows mode collapse.

CD is performing
GD on Fisher divergence, so it is insensitive to mass imbalance.
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Numerical Experiments II

Neural network: for real datasets like MNIST and CIFAR-10, we use a neural architecture to
model the potential

MNIST: we prune the dataset to three digits (2, 3 and 6) in order to stress multimodality
and we imbalance the relative number of examples.

Jarzynski correction: we recover the relative mass of the modes
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Numerical Experiments III

CIFAR-10: for a more complicate dataset, we tried to compare with (almost) state of the art
using architectures already present in literature (Nijkamp et al. 2019).
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Conclusions

Problem
Sampling from a Boltzmann-Gibbs pdf is hard, hence training an EBM using cross-entropy is
affected by uncontrolled approximations.

Solution
Solution: our proposal allows to exactly perform GD on cross-entropy. It requires negligible
extra computational cost and it can be used to substitute any sampling routine (ULA, MALA or
others) commonly used in EBM training.
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