EFFICIENT TRAINING OF ENERGY-BASED MODELS USING JARZYNSKI EQUALITY

Davide Carbone (Politecnico di Torino), Mengjian Hua (New York University), Simon Coste (University of Paris - P7) and Eric Vanden-Eijnden (New York University)

Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS 2023)

$$\rho_{\theta}(x) = Z_{\theta}^{-1} e^{-U_{\theta}(x)}; \qquad Z_{\theta} = \int_{\mathbb{R}^d} e^{-U_{\theta}(x)} dx$$

where $U_{\theta} : \mathbb{R}^d \to [0, \infty)$ is the energy function. The target density $\rho_*(x)$ we would like to fit is known just through samples $\{x_*^i\}_{i=1}^n \sim \rho_*(x)$.

$$\rho_{\theta}(x) = Z_{\theta}^{-1} e^{-U_{\theta}(x)}; \qquad Z_{\theta} = \int_{\mathbb{R}^d} e^{-U_{\theta}(x)} dx$$

where $U_{\theta} : \mathbb{R}^d \to [0, \infty)$ is the energy function. The target density $\rho_*(x)$ we would like to fit is known just through samples $\{x_*^i\}_{i=1}^n \sim \rho_*(x)$.

• Training: gradient descent over cross entropy (i.e. over KL divergence up to a constant)

$$\dot{\theta}(t) = -\partial_{\theta} H(\rho_{\theta}, \rho_{*}) = \underbrace{-\mathbb{E}_{*}[\partial_{\theta} U_{\theta}]}_{\text{from data}} + \underbrace{-\mathbb{E}_{*}[\partial_{\theta} U_{\theta}]}_{\text{fr$$

1

$$\rho_{\theta}(x) = Z_{\theta}^{-1} e^{-U_{\theta}(x)}; \qquad Z_{\theta} = \int_{\mathbb{R}^d} e^{-U_{\theta}(x)} dx$$

where $U_{\theta} : \mathbb{R}^d \to [0, \infty)$ is the energy function. The target density $\rho_*(x)$ we would like to fit is known just through samples $\{x_*^i\}_{i=1}^n \sim \rho_*(x)$.

• Training: gradient descent over cross entropy (i.e. over KL divergence up to a constant)

$$\dot{\theta}(t) = -\partial_{\theta} H(\rho_{\theta}, \rho_{*}) = \underbrace{-\mathbb{E}_{*}[\partial_{\theta} U_{\theta}]}_{\text{from data}} + \underbrace{\mathbb{E}_{\theta}[\partial_{\theta} U_{\theta}]}_{\text{samples from } \rho_{\theta}}$$

$$\rho_{\theta}(x) = Z_{\theta}^{-1} e^{-U_{\theta}(x)}; \qquad Z_{\theta} = \int_{\mathbb{R}^d} e^{-U_{\theta}(x)} dx$$

where $U_{\theta} : \mathbb{R}^d \to [0, \infty)$ is the energy function. The target density $\rho_*(x)$ we would like to fit is known just through samples $\{x_*^i\}_{i=1}^n \sim \rho_*(x)$.

• Training: gradient descent over cross entropy (i.e. over KL divergence up to a constant)

$$\dot{\theta}(t) = -\partial_{\theta} H(\rho_{\theta}, \rho_{*}) = \underbrace{-\mathbb{E}_{*}[\partial_{\theta} U_{\theta}]}_{\text{from data}} + \underbrace{\mathbb{E}_{\theta}[\partial_{\theta} U_{\theta}]}_{\text{samples from } \rho_{\theta}}$$

• **Possible solution**: generate samples from ρ_{θ} to compute $E_{\theta}[\partial_{\theta} U_{\theta}]$, using for instance ULA, MALA, Gibbs sampling, etc.

$$X_{k+1} = X_k - h\nabla U_{\theta}(X_k) + \sqrt{2h}\xi_k, \qquad X_0 \sim \rho_0$$

for $k \ge 0$, h > 0 and $\{\xi_k\}_{k \in \mathbb{N}_0}$ are independent $\mathcal{N}(0_d, I_d)$.

$$X_{k+1} = X_k - h\nabla U_{\theta}(X_k) + \sqrt{2h}\xi_k, \qquad X_0 \sim \rho_0$$

for $k \ge 0$, h > 0 and $\{\xi_k\}_{k \in \mathbb{N}_0}$ are independent $\mathcal{N}(0_d, I_d)$. We have $X_{\infty} \sim \rho_{\theta}$

$$X_{k+1} = X_k - h\nabla U_{\theta}(X_k) + \sqrt{2h}\xi_k, \qquad X_0 \sim \rho_0$$

for $k \ge 0$, h > 0 and $\{\xi_k\}_{k \in \mathbb{N}_0}$ are independent $\mathcal{N}(0_d, I_d)$. We have $X_{\infty} \sim \rho_{\theta}$ but given $X_k \sim \rho_k(x)$

$$\mathbb{E}_{\theta}[\partial_{\theta} U_{\theta}] \neq \int \partial_{\theta} U_{\theta}(x) \rho_k(x) dx$$

for any $k < \infty$. Even less controlled along EBM training since $\theta = \theta_k$ depends on time.

$$X_{k+1} = X_k - h\nabla U_{\theta}(X_k) + \sqrt{2h}\xi_k, \qquad X_0 \sim \rho_0$$

for $k \ge 0$, h > 0 and $\{\xi_k\}_{k \in \mathbb{N}_0}$ are independent $\mathcal{N}(0_d, I_d)$. We have $X_{\infty} \sim \rho_{\theta}$ but given $X_k \sim \rho_k(x)$

$$\mathbb{E}_{\theta}[\partial_{\theta} U_{\theta}] \neq \int \partial_{\theta} U_{\theta}(x) \rho_k(x) dx$$

for any $k < \infty$. Even less controlled along EBM training since $\theta = \theta_k$ depends on time.

State of the Art: Constrastive Divergence (ρ₀ = ρ_{*} with reinitialization of the chain at ρ_{*}) and Persistent Contrastive Divergence (ρ₀ = ρ_{*}). CD effectively performs GD on Fisher divergence [Domingo-Enrich et al., 2021].

$$\begin{cases} X_{k+1} = X_k - h\nabla U_{\theta_k}(X_k) + \sqrt{2h}\xi_k, & X_0 \sim \rho_{\theta_0}, \\ A_{k+1} = A_k - \alpha_{k+1}(X_{k+1}, X_k) + \alpha_k(X_k, X_{k+1}), & A_0 = 0, \end{cases}$$

with

$$\alpha_k(x,y) = U_{\theta_k}(x) + \frac{1}{2}(y-x) \cdot \nabla U_{\theta_k}(x) + \frac{1}{4}h|\nabla U_{\theta_k}(x)|^2$$

$$\begin{cases} X_{k+1} = X_k - h \nabla U_{\theta_k}(X_k) + \sqrt{2h} \xi_k, & X_0 \sim \rho_{\theta_0}, \\ A_{k+1} = A_k - \alpha_{k+1}(X_{k+1}, X_k) + \alpha_k(X_k, X_{k+1}), & A_0 = 0, \end{cases}$$

with

$$\alpha_k(x, y) = U_{\theta_k}(x) + \frac{1}{2}(y - x) \cdot \nabla U_{\theta_k}(x) + \frac{1}{4}h|\nabla U_{\theta_k}(x)|^2$$

for all $k \in \mathbb{N}_0$, the following equalities hold

$$\mathbb{E}_{\theta_k}[\partial_{\theta} U_{\theta_k}] = \frac{\mathbb{E}[\partial_{\theta} U_{\theta_k}(X_k) e^{A_k}]}{\mathbb{E}[e^{A_k}]}, \qquad Z_{\theta_k} = Z_{\theta_0} \mathbb{E}\left[e^{A_k}\right]$$

where $\mathbb{E}[\cdot]$ is the expectation w.r.t. the law of the joint process $(X_k, A_k) \in \mathbb{R}^d \times \mathbb{R}$

$$\begin{cases} X_{k+1} = X_k - h \nabla U_{\theta_k}(X_k) + \sqrt{2h} \xi_k, & X_0 \sim \rho_{\theta_0}, \\ A_{k+1} = A_k - \alpha_{k+1}(X_{k+1}, X_k) + \alpha_k(X_k, X_{k+1}), & A_0 = 0, \end{cases}$$

with

$$\alpha_k(x,y) = U_{\theta_k}(x) + \frac{1}{2}(y-x) \cdot \nabla U_{\theta_k}(x) + \frac{1}{4}h|\nabla U_{\theta_k}(x)|^2$$

for all $k \in \mathbb{N}_0$, the following equalities hold

$$\mathbb{E}_{\theta_k}[\partial_{\theta} U_{\theta_k}] = \frac{\mathbb{E}[\partial_{\theta} U_{\theta_k}(X_k) e^{A_k}]}{\mathbb{E}[e^{A_k}]}, \qquad Z_{\theta_k} = Z_{\theta_0} \mathbb{E}[e^{A_k}]$$

where $\mathbb{E}[\cdot]$ is the expectation w.r.t. the law of the joint process $(X_k, A_k) \in \mathbb{R}^d \times \mathbb{R}$

$$\begin{cases} X_{k+1} = X_k - h \nabla U_{\theta_k}(X_k) + \sqrt{2h} \xi_k, & X_0 \sim \rho_{\theta_0}, \\ A_{k+1} = A_k - \alpha_{k+1}(X_{k+1}, X_k) + \alpha_k(X_k, X_{k+1}), & A_0 = 0, \end{cases}$$

with

$$\alpha_k(x,y) = U_{\theta_k}(x) + \tfrac{1}{2}(y-x) \cdot \nabla U_{\theta_k}(x) + \tfrac{1}{4}h|\nabla U_{\theta_k}(x)|^2$$

for all $k \in \mathbb{N}_0$, the following equalities hold

$$\mathbb{E}_{\theta_k}[\partial_{\theta} U_{\theta_k}] = \frac{\mathbb{E}[\partial_{\theta} U_{\theta_k}(X_k) e^{A_k}]}{\mathbb{E}[e^{A_k}]}, \qquad \underbrace{Z_{\theta_k} = Z_{\theta_0} \mathbb{E}\left[e^{A_k}\right]}_{\text{Jarzynski identity}}$$

where $\mathbb{E}[\cdot]$ is the expectation w.r.t. the law of the joint process $(X_k, A_k) \in \mathbb{R}^d \times \mathbb{R}$

Numerical Experiments I

• **Gaussian Mixture**: Algo 1 is our proposal and Eq (21) is the estimation of KL using *A_k*. PCD and CD does not fit the right relative mass. PCD shows **mode collapse**.

Numerical Experiments I

• **Gaussian Mixture**: Algo 1 is our proposal and Eq (21) is the estimation of KL using A_k . PCD and CD does not fit the right relative mass. PCD shows **mode collapse**. CD is performing GD on Fisher divergence, so it is **insensitive to mass imbalance**.

Numerical Experiments II

- **Neural network**: for real datasets like MNIST and CIFAR-10, we use a neural architecture to model the potential
- **MNIST**: we prune the dataset to three digits (2, 3 and 6) in order to stress multimodality and we imbalance the relative number of examples.
- Jarzynski correction: we recover the relative mass of the modes

Numerical Experiments III

• **CIFAR-10**: for a more complicate dataset, we tried to compare with (almost) state of the art using architectures already present in literature (Nijkamp et al. 2019).

1	4	-	一			4			and a			-	2	4	13	H
1	A.	in .	1		1	意	Ser.		2			3	-	5	al.	
¥,	1 P	3	雪	The second	1	Tak.	1		1	2.1	-		32		0	5
7	-	堂	i k	7	-	4	44	8	X	1		3	A	-	K	14
	A.	14	j.	E C	1	107			120	No.	Ē.	1		5	5	5
i.	4	Į.	22	E	*	1	P		1 N	1	Y	5	The second	5	3	22
	-st		3		-	-				T.	5	R	No.			No.
Ň	N.	1	14	-	-		15		K	5	9	*		his	N.	-
3-	-		The	A	it.		100			3		A.	Sec.	-	N e	A.
	1		3	E.	1	1				1	-	"F	10			- All
1	Y	35	12		1	0.	4		-	Sec.		19	4	1.	-	
*1	t			1		27	R		-51	N.	1.1	8		A		470
	15	A.	10	*	4	1º	-		1	1	0	1	1		3	
2			2	A		E.	Nº.			-	-	2	10			e.
ser	-	and the		L.	-	1	1			-	1				3	
	1	1	-	S.	-	T						d'	1	1	and the	5

Method	FID	Inception Score (IS)
PCD with mini-batches	38.25	5.96
PCD with mini-batches and data augmentation	36.43	6.54
Algorithm 4 with multinomial resampling	32.18	6.88
Algorithm 4 with systematic resampling	30.24	6.97

Generated CIFAR-10 samples with our approach Generated CIFAR-10 samples with PCD

Problem

Sampling from a Boltzmann-Gibbs pdf is hard, hence training an EBM using cross-entropy is affected by uncontrolled approximations.

Problem

Sampling from a Boltzmann-Gibbs pdf is hard, hence training an EBM using cross-entropy is affected by uncontrolled approximations.

Solution

Solution: our proposal allows to **exactly perform GD** on cross-entropy. It requires **negligible extra computational cost** and it can be used to substitute any sampling routine (ULA, MALA or others) commonly used in EBM training.