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Figure 2: Left: Inside the ET block. The input token x passes through a sequence of operations
and gets updated to produce the output token x0. The operations inside the ET block are carefully
engineered so that the entire network has a global energy function, which decreases with time and
is bounded from below. In contrast to conventional transformers, the ET-based analogs of the atten-
tion module and the feed-forward MLP module are applied in parallel as opposed to consecutively.
Center: The cosine similarity between the learned position embedding of each patch and every
other patch. In each cell, the brightest patch indicates the cell of consideration. Right: 100 se-
lected memories stored in the HN memory matrix, visualized by the decoder as 16x16 RGB image
patches. This visualization is unique to our model, as traditional Transformers cannot guarantee
image representations in the learned weights.

an identity consistent with their locations and the identities of open particles. This dynamical evolu-
tion is designed so that it minimizes a global energy function, and is guaranteed to arrive at a fixed
point attractor state. The identities of the masked particles are considered to be revealed when the
dynamical trajectory reaches the fixed point. Thus, the central question is: how can we design the
energy function that accurately captures the task that the Energy Transformer needs to solve?

The masked particles’ search for identity is guided by two pieces of information: identities of the
open particles, and the general knowledge about what patches are in principle possible in the space
of all possible images. These two pieces of information are described by two contributions to the
ET’s energy function: the energy based attention and the Hopfield Network, respectively, for reasons
that will become clear in the next sections. Below we define each element of the ET block in the
order they appear in Figure 2.

LAYER NORM

Each token is represented by a vector x 2 R
D. At the same time, most of the operations inside the

ET block are defined using a layer-normalized token representation
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The scalar � and the vector �i are learnable parameters, " is a small regularization constant. Impor-
tantly, this operation can be viewed as an activation function for the neurons and can be defined as a
partial derivative of the Lagrangian function
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See Krotov & Hopfield (2021); Tang & Kopp (2021); Krotov (2021) for a detailed discussion of this
property.
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Figure 1: Overview of the Energy Transformer (ET). Instead of a sequence of conventional trans-
former blocks, a single recurrent ET block is used. The operation of this block is dictated by the
global energy function. The token representations are updated according to a continuous time differ-
ential equation with the time-discretized update step ↵ = dt/⌧ . On the image domain, images are
split into non-overlapping patches that are linearly encoded into tokens with added learnable posi-
tional embeddings (POS). Some patches are randomly masked. These tokens are recurrently passed
through ET, and each iteration reduces the energy of the set of tokens. The token representations
at or near the fixed point are then decoded using the decoder network to obtain the reconstructed
image. The network is trained by minimizing the mean squared error loss between the reconstructed
image and the original image. On the graph domain, the same general pipeline is used. Each token
represents a node, and each node has its own positional encoding. The token representations at or
near the fixed point are used for the prediction of the anomaly status of each node.

Hopfield Networks. Ramsauer et al. (2020) additionally describe how the attention mechanism in
transformers is closely related to a special model of this family with the softmax activation function.

There are high-level conceptual similarities between transformers and Dense Associative Memories,
since both architectures are designed for some form of denoising of the input. Transformers are
typically pre-trained on a masked-token task, e.g., in the domain of Natural Language Processing
(NLP) certain tokens in the sentence are masked and the model predicts the masked tokens. Dense
Associative Memory models are designed for completing the incomplete patterns. For instance, a
pattern can be the concatenation of an image and its label, and the model can be trained to predict
part of the input (the label), which is masked, given the query (the image). They can also be trained
in a self-supervised way by predicting the occluded parts of the image, or denoising the image.

There are also high-level differences between the two classes of models. Associative Memories
are recurrent networks with a global energy function so that the network dynamics converges to a
fixed point attractor state corresponding to a local minimum of the energy function. Transformers
are typically not described as dynamical systems at all. Rather, they are thought of as feed-forward
networks built of the four computational elements discussed above. Even if one thinks about them
as dynamical systems with tied weights, e.g., (Bai et al., 2019), there is no reason to expect that their
dynamics converge to a fixed point attractor (see the discussion in (Lan et al., 2020)).

Additionally, a recent study (Yang et al., 2022) uses a form of Majorization-Minimization algorithms
(Sun et al., 2016) to interpret the forward path in the transformer block as an optimization process.
This interpretation requires imposing certain constraints on the operations inside the block, and at-
tempting to find an energy function that describes the constrained block. We take a complementary
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Figure 2: Left: Inside the ET block. The input token x passes through a sequence of operations
and gets updated to produce the output token x0. The operations inside the ET block are carefully
engineered so that the entire network has a global energy function, which decreases with time and
is bounded from below. In contrast to conventional transformers, the ET-based analogs of the atten-
tion module and the feed-forward MLP module are applied in parallel as opposed to consecutively.
Center: The cosine similarity between the learned position embedding of each patch and every
other patch. In each cell, the brightest patch indicates the cell of consideration. Right: 100 se-
lected memories stored in the HN memory matrix, visualized by the decoder as 16x16 RGB image
patches. This visualization is unique to our model, as traditional Transformers cannot guarantee
image representations in the learned weights.

an identity consistent with their locations and the identities of open particles. This dynamical evolu-
tion is designed so that it minimizes a global energy function, and is guaranteed to arrive at a fixed
point attractor state. The identities of the masked particles are considered to be revealed when the
dynamical trajectory reaches the fixed point. Thus, the central question is: how can we design the
energy function that accurately captures the task that the Energy Transformer needs to solve?

The masked particles’ search for identity is guided by two pieces of information: identities of the
open particles, and the general knowledge about what patches are in principle possible in the space
of all possible images. These two pieces of information are described by two contributions to the
ET’s energy function: the energy based attention and the Hopfield Network, respectively, for reasons
that will become clear in the next sections. Below we define each element of the ET block in the
order they appear in Figure 2.
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The scalar � and the vector �i are learnable parameters, " is a small regularization constant. Impor-
tantly, this operation can be viewed as an activation function for the neurons and can be defined as a
partial derivative of the Lagrangian function
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See Krotov & Hopfield (2021); Tang & Kopp (2021); Krotov (2021) for a detailed discussion of this
property.
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Figure 2: Left: Inside the ET block. The input token x passes through a sequence of operations
and gets updated to produce the output token x0. The operations inside the ET block are carefully
engineered so that the entire network has a global energy function, which decreases with time and
is bounded from below. In contrast to conventional transformers, the ET-based analogs of the atten-
tion module and the feed-forward MLP module are applied in parallel as opposed to consecutively.
Center: The cosine similarity between the learned position embedding of each patch and every
other patch. In each cell, the brightest patch indicates the cell of consideration. Right: 100 se-
lected memories stored in the HN memory matrix, visualized by the decoder as 16x16 RGB image
patches. This visualization is unique to our model, as traditional Transformers cannot guarantee
image representations in the learned weights.

an identity consistent with their locations and the identities of open particles. This dynamical evolu-
tion is designed so that it minimizes a global energy function, and is guaranteed to arrive at a fixed
point attractor state. The identities of the masked particles are considered to be revealed when the
dynamical trajectory reaches the fixed point. Thus, the central question is: how can we design the
energy function that accurately captures the task that the Energy Transformer needs to solve?

The masked particles’ search for identity is guided by two pieces of information: identities of the
open particles, and the general knowledge about what patches are in principle possible in the space
of all possible images. These two pieces of information are described by two contributions to the
ET’s energy function: the energy based attention and the Hopfield Network, respectively, for reasons
that will become clear in the next sections. Below we define each element of the ET block in the
order they appear in Figure 2.
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tantly, this operation can be viewed as an activation function for the neurons and can be defined as a
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See Krotov & Hopfield (2021); Tang & Kopp (2021); Krotov (2021) for a detailed discussion of this
property.
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MULTI-HEAD ENERGY ATTENTION

The first contribution to the ET’s energy function is responsible for exchanging information between
the particles (patches). Similarly to the conventional attention mechanism, each token generates a
pair of queries and keys (ET does not have a separate value matrix; instead the value matrix is a
function of keys and queries). The goal of the energy based attention is to evolve the tokens in such
a way that the keys of the open patches are aligned with the queries of the masked patches in the
internal space of the attention operation. Below we use index ↵ = 1...Y to denote elements of this
internal space, and index h = 1...H to denote different heads of this operation. With these notations
the energy-based attention operation is described by the following energy function:
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and the tensors WK 2 R
Y⇥H⇥D and WQ 2 R

Y⇥H⇥D are learnable parameters.

From the computational perspective each patch generates two representations: query (given the
position of the patch and its current content, where in the image should it look for the prompts on
how to evolve in time?), and key (given the current content of the patch and its position, what should
be the contents of the patches that attend to it?). The log-sum energy function (3) is minimal when
for every patch in the image its queries are aligned with the keys of a small number of other patches
connected by the attention map. Different heads (index h) contribute to the energy additively.

HOPFIELD NETWORK MODULE

The next step of the ET block, which we call the Hopfield Network (HN), is responsible for ensuring
that the token representations are consistent with what one expects to see in realistic images. The
energy of this sub-block is defined as:
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where ⇠µj is a set of learnable weights (memories in the Hopfield Network), and r(·) is an activation
function. Depending on the choice of the activation function this step can be viewed either as a
classical continuous Hopfield Network (Hopfield, 1984) if the activation function grows slowly (e.g.,
ReLU), or as a modern continuous Hopfield Network (Krotov & Hopfield, 2016; Ramsauer et al.,
2020; Krotov & Hopfield, 2021) if the activation function is sharply peaked around the memories
(e.g. power or softmax). The HN sub-block is analogous to the feed-forward MLP step in the
conventional transformer block but requires that the weights of the projection from the token space
to the hidden neuron’s space to be the same (transposed matrix) as the weights of the subsequent
projection from the hidden space to the token space. Thus, the HN module here is an MLP with
shared weights that is applied recurrently. The energy contribution of this block is low when the
tokens representations are aligned with some rows of the matrix ⇠, which represent memories.

DYNAMICS OF TOKEN UPDATES

The forward path of the ET network is described by the continuous time differential equation, which
minimizes the sum of the two energies described above

⌧
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= � @E

@giA
, where E = E

ATT + E
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Here xiA is the token representation (input and output from the ET block), and giA is its layer-
normalized version. The first energy is low when each patch’s queries are aligned with the keys
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the particles (patches). Similarly to the conventional attention mechanism, each token generates a
pair of queries and keys (ET does not have a separate value matrix; instead the value matrix is a
function of keys and queries). The goal of the energy based attention is to evolve the tokens in such
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position of the patch and its current content, where in the image should it look for the prompts on
how to evolve in time?), and key (given the current content of the patch and its position, what should
be the contents of the patches that attend to it?). The log-sum energy function (3) is minimal when
for every patch in the image its queries are aligned with the keys of a small number of other patches
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where ⇠µj is a set of learnable weights (memories in the Hopfield Network), and r(·) is an activation
function. Depending on the choice of the activation function this step can be viewed either as a
classical continuous Hopfield Network (Hopfield, 1984) if the activation function grows slowly (e.g.,
ReLU), or as a modern continuous Hopfield Network (Krotov & Hopfield, 2016; Ramsauer et al.,
2020; Krotov & Hopfield, 2021) if the activation function is sharply peaked around the memories
(e.g. power or softmax). The HN sub-block is analogous to the feed-forward MLP step in the
conventional transformer block but requires that the weights of the projection from the token space
to the hidden neuron’s space to be the same (transposed matrix) as the weights of the subsequent
projection from the hidden space to the token space. Thus, the HN module here is an MLP with
shared weights that is applied recurrently. The energy contribution of this block is low when the
tokens representations are aligned with some rows of the matrix ⇠, which represent memories.
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Figure 1: Overview of the Energy Transformer (ET). Instead of a sequence of conventional trans-
former blocks, a single recurrent ET block is used. The operation of this block is dictated by the
global energy function. The token representations are updated according to a continuous time differ-
ential equation with the time-discretized update step ↵ = dt/⌧ . On the image domain, images are
split into non-overlapping patches that are linearly encoded into tokens with added learnable posi-
tional embeddings (POS). Some patches are randomly masked. These tokens are recurrently passed
through ET, and each iteration reduces the energy of the set of tokens. The token representations
at or near the fixed point are then decoded using the decoder network to obtain the reconstructed
image. The network is trained by minimizing the mean squared error loss between the reconstructed
image and the original image. On the graph domain, the same general pipeline is used. Each token
represents a node, and each node has its own positional encoding. The token representations at or
near the fixed point are used for the prediction of the anomaly status of each node.

Hopfield Networks. Ramsauer et al. (2020) additionally describe how the attention mechanism in
transformers is closely related to a special model of this family with the softmax activation function.

There are high-level conceptual similarities between transformers and Dense Associative Memories,
since both architectures are designed for some form of denoising of the input. Transformers are
typically pre-trained on a masked-token task, e.g., in the domain of Natural Language Processing
(NLP) certain tokens in the sentence are masked and the model predicts the masked tokens. Dense
Associative Memory models are designed for completing the incomplete patterns. For instance, a
pattern can be the concatenation of an image and its label, and the model can be trained to predict
part of the input (the label), which is masked, given the query (the image). They can also be trained
in a self-supervised way by predicting the occluded parts of the image, or denoising the image.

There are also high-level differences between the two classes of models. Associative Memories
are recurrent networks with a global energy function so that the network dynamics converges to a
fixed point attractor state corresponding to a local minimum of the energy function. Transformers
are typically not described as dynamical systems at all. Rather, they are thought of as feed-forward
networks built of the four computational elements discussed above. Even if one thinks about them
as dynamical systems with tied weights, e.g., (Bai et al., 2019), there is no reason to expect that their
dynamics converge to a fixed point attractor (see the discussion in (Lan et al., 2020)).

Additionally, a recent study (Yang et al., 2022) uses a form of Majorization-Minimization algorithms
(Sun et al., 2016) to interpret the forward path in the transformer block as an optimization process.
This interpretation requires imposing certain constraints on the operations inside the block, and at-
tempting to find an energy function that describes the constrained block. We take a complementary
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anomalous users under the Musical Instrument Category on amazon.com (McAuley & Leskovec,
2013). T-Finance and T-Social datasets (Tang et al., 2022) are used for anomalous account detection
in the transactions and social networks, respectively. For these four datasets, the graph is treated as a
homogeneous graph (i.e. all the edges are of the same type), and a feature vector is associated with
each node. The task is to predict the label (anomaly status) of the nodes. For each dataset, either
1% or 40% of the nodes are used for training, and the remaining 99% or 60% are split 1 : 2 into
validation and testing, see Appendix B for details.

We compare with state-of-the-art approaches for graph anomaly detection, which include Graph-
Consis (Liu et al., 2020), CAREGNN (Dou et al., 2020), PC-GNN (Liu et al., 2021) and BWGNN
(Tang et al., 2022). Additionally, multi-layer perceptrons (MLP) and Graph Transformer (GT)
(Dwivedi & Bresson, 2020) are included in the baselines for completeness. Following previous
work, macro-F1 score (unweighted mean of F1 score) and the Area Under the Curve (AUC) are
used as the evaluation metrics on the test datasets Davis & Goadrich (2006). See Appendix B for
more details on training protocols and the hyperparameters choices. The results are reported in
Table 1. Our ET network demonstrates very strong results across all the datasets.

Table 1: Performance of all the methods on Yelp, Amazon, T-Finance, and T-Social datasets with
different training ratios. Following Tang et al. (2022), mean and standard deviation over 5 runs with
different train/dev/test split are reported for our method and the baselines (standard deviations are
only included if they are available in the prior work). Best results are in bold. Our model is state of
the art or near state of the art on every category.

Datasets Split GraphConsis CAREGNN PC-GNN BWGNN MLP GT ET (Ours)

Yelp 1% 56.8±2.8 62.1±1.3 59.8±1.4 61.1±0.4 53.9±0.2 61.7±0.4 63.0±0.6

40% 58.7±2.0 63.3±0.9 63.0±2.3 71.0±0.9 57.5±0.8 68.7±0.4 71.5±0.1

Amazon 1% 68.5±3.4 68.7±1.6 79.8±5.6 90.9±0.7 74.6±1.2 88.6±0.5 89.3±0.7

M
a
c
r
o
-F

1 40% 75.1±3.2 86.3±1.7 89.5±0.7 92.2±0.4 79.1±1.2 91.7±0.8 92.8±0.3

T-Finance 1% 71.7 73.3 62.0 84.8 61.0 81.5 85.1±1.0

40% 73.4 77.5 63.1 86.8 70.5 83.6 88.2±1.0

T-Social 1% 52.4 55.8 51.1 75.9 50.0 64.3 79.1±0.7

40% 56.5 56.2 52.1 83.9 50.3 68.2 83.5±0.4

Yelp 1% 66.4±3.4 75.0±3.8 75.4±0.9 72.0±0.5 59.8±0.4 72.5±0.6 73.2±0.8

40% 69.8±3.0 76.1±2.9 79.8±0.1 84.0±0.9 66.5±1.0 81.9±0.5 84.9±0.3

Amazon 1% 74.1±3.5 88.6±3.5 90.4±2.0 89.4±0.3 83.6±1.7 89.0±1.2 91.9±1.0

A
U

C

40% 87.4±3.3 90.5±1.6 95.8±0.1 98.0±0.4 89.8±1.0 95.4±0.6 97.3±0.4

T-Finance 1% 90.2 90.5 90.7 91.1 82.9 90.0 92.8±1.1

40% 91.4 92.1 91.2 94.3 87.1 88.2 95.0±3.0

T-Social 1% 65.2 71.2 59.8 88.0 56.3 81.4 91.9±0.6

40% 71.2 71.8 68.4 95.2 56.9 82.5 93.9±0.2

5 DISCUSSION AND CONCLUSIONS

A lot of recent research has been dedicated to understanding the striking analogy between Hopfield
Networks and the attention mechanism in transformers. At a high level, the main message of our
work is that the entire transformer block (including feed-forward MLP, layer normalization, and
residual connections) can be viewed as a single large Hopfield Network, not just attention alone. At
a deeper level, we use recent advances in the field of Hopfield Networks to design a novel energy
function that is tailored for dynamical information routing between the tokens and representation of
a large number of relationships between those tokens. When used in the encoder-decoder setting,
an appealing feature of our network is that any state, weight, or state update can be mapped di-
rectly into the data domain. This provides the possibility to inspect the inner workings of the whole
network, contributing to its interpretability. The attention mechanism in our network contains an
important extra term compared to conventional attention. We have tested the ET network on the
image completion task (qualitatively) and node anomaly detection on graphs (quantitatively). The
qualitative investigation reveals the perfect alignment between the theoretical design principles of
our network and its empirical computation. The quantitative evaluation demonstrates strong results,
which stand in line or exceed the methods recently developed specifically for this task. Although we
have only tested ET on two tasks, we intentionally picked two entirely different data domains (im-
ages and graphs). We believe that the proposed network will be useful for other tasks and domains
and deserves a comprehensive investigation in line with other popular variants of transformers.
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