Energy Transformer

Benjamin Hoover*, Yuchen Liang*, Bao Pham*, Rameswar Panda, Hendrik Strobelt, Duen Horng Chau, Mohammed J. Zaki, Dmitry Krotov

IBM Research

*Authors contributed equally

Energy Transformer combines 3 paradigms

Transformer

Evolves tokens using attention

Energy-Based Model

Inference minimizes a computed energy

Associative Memory

An dynamical attractor system where inference is pattern completion

Energy transformer block

Energy Transformer in practice

IBM Research

Conventional Transformers vs. Energy Transformer

X Conventional transformer block

Energy transformer block

Attention energy is low when keys are aligned with queries (and vice versa)

$$E^{\text{ATT}} = -\frac{1}{\beta} \sum_{h} \sum_{C} \log \left(\sum_{B \neq C} \exp \left(\beta \sum_{\alpha} K_{\alpha h B} \right) \right)$$

1

Hopfield Network energy is low when tokens look like memories

$$E^{\rm HN} = -\sum_{B=1}^{N} \sum_{\mu=1}^{K} G\left(\sum_{j=1}^{D} \xi_{\mu j} \ g_{jB}\right)$$

Energy Transformer: make both sub-blocks happy

 $E = E^{\text{ATT}} + E^{\text{HN}}$

$$\tau \frac{dx_{iA}}{dt} = -\frac{\partial E}{\partial g_{iA}}$$

	Datasets	Split	GraphConsis	CAREGNN	PC-GNN	BWGNN	MLP	GT	ET (Ours)
Macro-F1	Yelp	1%	$56.8_{\pm 2.8}$	$62.1_{\pm 1.3}$	$59.8_{\pm 1.4}$	$61.1_{\pm 0.4}$	$53.9_{\pm 0.2}$	$61.7_{\pm 0.4}$	$63.0_{\pm 0.6}$
		40%	$58.7_{\pm 2.0}$	$63.3_{\pm 0.9}$	$63.0_{\pm 2.3}$	$71.0_{\pm 0.9}$	$57.5_{\pm 0.8}$	$68.7_{\pm 0.4}$	$71.5_{\pm 0.1}$
	Amazon	1%	$68.5_{\pm 3.4}$	$68.7_{\pm 1.6}$	$79.8_{\pm 5.6}$	$90.9_{\pm 0.7}$	$74.6_{\pm 1.2}$	$88.6_{\pm 0.5}$	$89.3_{\pm 0.7}$
		40%	$75.1_{\pm 3.2}$	$86.3_{\pm 1.7}$	$89.5_{\pm 0.7}$	$92.2_{\pm 0.4}$	$79.1_{\pm 1.2}$	$91.7_{\pm 0.8}$	$92.8_{\pm 0.3}$
	T-Finance	1%	71.7	73.3	62.0	84.8	61.0	81.5	$85.1_{\pm 1.0}$
		40%	73.4	77.5	63.1	86.8	70.5	83.6	$88.2_{\pm 1.0}$
	T Social	1%	52.4	55.8	51.1	75.9	50.0	64.3	$79.1_{\pm 0.7}$
	1-5001a1	40%	56.5	56.2	52.1	83.9	50.3	68.2	$83.5_{\pm 0.4}$
AUC	Yelp	1%	$66.4_{\pm 3.4}$	$75.0_{\pm 3.8}$	$75.4_{\pm 0.9}$	$72.0_{\pm 0.5}$	$59.8_{\pm 0.4}$	$72.5_{\pm 0.6}$	$73.2_{\pm 0.8}$
		40%	$69.8_{\pm 3.0}$	$76.1_{\pm 2.9}$	$79.8_{\pm 0.1}$	$84.0_{\pm 0.9}$	$66.5_{\pm 1.0}$	$81.9_{\pm 0.5}$	$84.9_{\pm 0.3}$
	Amazon	1%	$74.1_{\pm 3.5}$	$88.6_{\pm 3.5}$	$90.4_{\pm 2.0}$	$89.4_{\pm 0.3}$	$83.6_{\pm 1.7}$	$89.0_{\pm 1.2}$	$91.9_{\pm 1.0}$
		40%	$87.4_{\pm 3.3}$	$90.5_{\pm 1.6}$	$95.8_{\pm 0.1}$	$98.0_{\pm 0.4}$	$89.8_{\pm 1.0}$	$95.4_{\pm 0.6}$	$97.3_{\pm 0.4}$
	T-Finance	1%	90.2	90.5	90.7	91.1	82.9	90.0	$92.8_{\pm 1.1}$
		40%	91.4	92.1	91.2	94.3	87.1	88.2	$95.0_{\pm 3.0}$
	T-Social	1%	$\boxed{65.2}$	71.2	59.8	88.0	56.3	81.4	$91.9_{\pm 0.6}$
		40%	71.2	71.8	68.4	95.2	56.9	82.5	$93.9_{\pm 0.2}$

Anomaly Detection

Graph Classification

	Dataset									
Method	PROTEINS	NCI1	NCI109	DD	ENZYMES	MUTAG	MUTAGENICITY	FRANKENSTEIN		
WKPI (kmeans)	$78.5_{\pm 0.4}$ $\bigtriangledown (6.4)$	$87.5_{\pm 0.5}$	$85.9_{\pm 0.4}$ \bigtriangledown (1.5)	$82.0_{\pm 0.5}$ $\mathbf{v}(13.7)$	-	$85.8_{\pm 2.5}$ $\mathbf{v}(14.2)$	-	-		
WKPI (kcenters)	75.2 _{±0.4} ▼(9.7)	84.5 _{±0.5} ▼ (3.0)	$87.4_{\pm 0.3}$	$80.3_{\pm 0.4}$ $\mathbf{v}(15.4)$	-	$88.3_{\pm 2.6}$ $\mathbf{v}(11.7)$	-	-		
Spec-GN	-	$84.8_{\pm 1.6}$ $\mathbf{v}(2.7)$	$83.6_{\pm 0.8}$ $\mathbf{(3.8)}$	-	$72.5_{\pm 5.8}$ $\mathbf{(5.9)}$	-	-	-		
Norm-GN	-	$84.9_{\pm 1.7}$ $\mathbf{v}(2.6)$	$83.5_{\pm 1.3}$ $\mathbf{(3.9)}$	-	$73.3_{\pm 8.0}$ $\mathbf{(5.1)}$	-	-	-		
GWL-WL	$75.8_{\pm 0.6}$ $\mathbf{v}(9.1)$	-	-	-	$71.3_{\pm 1.1}$ $\mathbf{(7.1)}$	-	-	$78.9_{\pm 0.3}$		
HGP-SL	$84.9_{\pm 1.6}$	$78.5_{\pm 0.8}$ $\mathbf{(9.1)}$	$80.7_{\pm 1.2}$ $\mathbf{(6.7)}$	$81.0_{\pm 1.3}$ $\mathbf{v}(14.7)$	$68.8_{\pm 2.1}$ \bigtriangledown (9.6)	-	$82.2_{\pm 0.6}$	-		
DSGCN	$77.3_{\pm 0.4}$ $\mathbf{(}7.6)$	-	-	-	$78.4_{\pm 0.6}$	-	-	-		
U2GNN	$80.0_{\pm 3.2}$ $\mathbf{v}(4.9)$	-	-	$95.7_{\pm 1.9}$	-	$88.5_{\pm 7.1}$ $\mathbf{v}(11.5)$	-	-		
NDP	$73.4_{\pm 3.1}$ $\mathbf{v}(11.5)$	$74.2_{\pm 1.7}$ $\mathbf{v}(13.3)$	-	$72.8_{\pm 5.4}$ $\mathbf{v}(22.9)$	$44.5_{\pm 7.4}$ $\mathbf{(34.9)}$	87.9 $_{\pm 5.7}$ \bigtriangledown (12.1)	$77.9_{\pm 1.4}$ $\mathbf{v}(4.3)$	-		
ASAP	$74.2_{\pm 0.8}$ $\mathbf{v}(10.7)$	$71.5_{\pm 0.4}$ $\mathbf{v}(16.0)$	$70.1_{\pm 0.6}$ $\mathbf{v}(17.3)$	$76.9_{\pm 0.7}$ $\mathbf{v}(18.8)$	-	-	-	$66.3_{\pm 0.5}$ $\mathbf{v}(12.6)$		
EvoG	-	-	-	-	55.7 v (22.7)	100.0	-	-		
ET (Ours)	90.3 ±0.7 ▲(5.4)	90.1 ±0.1 ▲(2.6)	90.5 ±0.1 ▲(3.1)	95.9 ±0.8 ▲(0.2)	99.8 ▲(21.4)	96.6 _{±0.2} ▼(3.4)	98.7 ±0.1 ▲(16.5)	99.8 ±0.1 ▲(20.9)		