Optimize Planning Heuristics to Rank, not to Estimate Cost-to-Goal

Leah Chrestien, Tomáš Pevný, Stefan Edelkamp, Antonín Komenda
Czech Technical University in Prague (CTU)

November 13, 2023

Background

The majority of research in heuristic search to estimate the cost-to-goal L_{2} loss to generate optimal heuristics for many best-first heuristic search algorithms including A^{*} or IDA*.

$$
L_{2}=\frac{1}{N} \sum_{i}^{N}\left(h_{i}-h_{i}^{*}\right)^{2}
$$

Issues with L_{2}
(6) A true cost-to-goal h^{*} does not guarantee that the search will find optimal solutions during minimum expansion of states.
(Optimizing cost-to-goal h^{*} does not utilize states off the solution path.
(t) Heuristic value for dead-end states are set to large values which can affect the stability of convergence of gradient-based optimization methods.

Our contribution

How do we rank states?

For a forward search merit function
$f(s)=\alpha g(s)+\beta h(s)$,
rank the states by setting these inequalities.

- $f\left(s_{1}\right)<f\left(s_{4}\right)$
- $f\left(s_{2}\right)<f\left(s_{4}\right)$
- $f\left(s_{2}\right)<f\left(s_{6}\right)$
- $f\left(s_{2}\right)<f\left(s_{5}\right)$
- $f\left(s_{2}\right)<f\left(s_{7}\right)$

The real heuristic values are not required!

Optimal states: $s_{0}, s_{1}, s_{2}, s_{3}$
Non optimal states: $s_{4}, s_{5}, s_{6}, s_{7}$

Perfect ranking heuristic

Definition 1 (Perfect ranking heuristic)

A heuristic function $h(s)$ is a perfect ranking in forward search with a merit function $f(s)=\alpha g(s)+\beta h(s)$ for a problem instance if and only if there exists an optimal plan $\pi=\left(\left(s_{0}, s_{1}\right),\left(s_{1}, s_{2}\right), \ldots,\left(s_{l-1}, s_{l}\right)\right)$ such that

- $g(s)$ is the cost from s_{0} to s in a search-tree created by expanding only states on the optimal path π;
- $f\left(s_{j}\right)>f\left(s_{i}\right), \forall s_{i} \in \mathcal{S}^{\pi} \wedge s_{j} \notin \mathcal{S}^{\pi}$
where \mathcal{S} denote all possible states $s \in \mathcal{S}, s_{0} \in \mathcal{S}$ is the initial state.

If the heuristic function satisfies these conditions, it is known as an optimally efficient heuristic function. This ensures that the search expands the minimum number of states on the optimal path.

Properties of an optimally efficient heuristic function

Pros and Cons

- 1. Rank optimization uses states off the solution path while cost-to-go doesn't.
- 2. Unlike cost-to-goal, a perfectly ranking heuristic does not provide a false sense of optimality.
- 3. Zero loss means optimal behavior.
- 4. Heuristic values for dead-end states are not needed.
- 5. The perfectly ranking heuristic is not goal-aware.

Experimental Method: 1. Generate initial training data

For details on SymBA*, see
https://homes.cs.aau.dk/ alto/papers/Planner-SymBA14.pdf

Experimental Method: 2. Instantiate the losses

Expand the A^{*} and GBFS search trees on samples. Minimize the number of violated conditions/inequalities (see slide below) for a problem instance $\left(\Gamma, s_{0}, \mathcal{S}^{*}\right)$ and its optimal plan π.

For a heuristic function $h(s, \theta)$ with parameters $\theta \in \Theta$, the number of violated conditions can be counted as

$$
\begin{equation*}
\mathrm{L}_{01}(h, \Gamma, \pi)=\sum_{s_{i} \in \mathcal{S}^{\pi}} \sum_{s_{j} \in \mathcal{O}_{i} \backslash \mathcal{S}^{\pi}: i} \llbracket r\left(s_{i}, s_{j}, \theta\right)>0 \rrbracket, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
r\left(s_{i}, s_{j}, \theta\right)=\alpha\left(g\left(s_{i}\right)-g\left(s_{j}\right)\right)+\beta\left(h\left(s_{i}, \theta\right)-h\left(s_{j}, \theta\right)\right) \tag{2}
\end{equation*}
$$

In practice, the Iverson bracket $\llbracket \cdot \rrbracket$ (also called 0-1 loss) is usually replaced by a convex surrogate such as the hinge-loss.

Experimental Method: 3. Train the NNs.

We instantiate the following loss functions that minimize the violated inequalities on states expanded during A^{*} and GBFS search:

- L*in A* search.
- $\mathrm{L}_{\mathrm{gbfs}}$ in GBFS search.
- L_{2} or cost-to-go in regression.
- L_{rt} that compares states only on the solution trajectories.
- Lbe known as Bellman loss. ${ }^{1}$
- L_{le}, a policy guided search with GBFS modified for efficiency. ${ }^{2}$

[^0]
Coverage

problem	complx.	A*					GBFS					
		L*	$\mathrm{L}_{\mathrm{gbfs}}$	L_{rt}	L_{2}	L_{be}	L*	$\mathrm{L}_{\mathrm{gbfs}}$	L_{rt}	L_{2}	L be	L_{le}
Blocks		100	100	100	99	100	100	100	100	100	100	99
Ferry		98	98	100	92	100	98	100	100	100	98	98
N-Puzzle		89	87	88	83	89	92	89	89	89	92	88
Spanner		100	89	100	84	92	100	100	100	100	100	100
Elevators		91	85	75	36	66	92	85	79	76	67	58
Sokoban	3 boxes	99	98	96	97	92	98	100	94	95	92	98
	4 boxes	89	89	85	81	82	87	91	84	83	84	84
	5 boxes	80	75	72	72	73	78	77	74	72	72	73
	6 boxes	76	69	59	51	53	73	71	56	51	54	64
	7 boxes	55	49	47	42	45	51	49	48	43	45	49
Maze w. t.	50×50	92	91	88	87	87	89	90	89	84	85	89
	55×55	78	75	73	72	74	74	75	74	72	75	74
	60×60	49	37	35	32	31	42	48	36	34	32	42
Sliding puzzle	5×5	88	83	84	80	82	86	87	84	84	84	85
	6×6	51	48	49	45	46	47	49	45	43	46	48
	7×7	39	35	36	32	34	35	36	35	32	34	35

[^0]: ${ }^{1}$ Learning general optimal policies with GNNs: Expressive power, transparency, and limits.
 ${ }^{2}$ Policy-guided heuristic search with guarantees.

