

An Efficient Dataset Condensation Plugin and Its Application to Continual Learning

Enneng Yang¹ Li Shen² Zhenyi Wang³ Tongliang Liu⁴ Guibing Guo¹

¹Northeastern University, China ²JD Explore Academy, China ³University of Maryland, USA ⁴The University of Sydney, Australia

Dataset Distillation / Condensation

Definition: Dataset condensation distills a large real-world dataset into a small synthetic dataset, with the goal of training a network from scratch on the latter that *performs similarly* to the former.

Fig.1 Dataset distillation problem paradigm^[1].

Problem Definition

We expect a network ϕ_{θ^s} trained on the <u>small dataset</u> *S* to have similar performance to a network ϕ_{θ^T} trained on the <u>large training set</u> *T* on the unseen test dataset, that is:

$$\mathbb{E}_{\mathbf{x}_{i} \sim P_{\mathcal{T}}} \left[\ell \left(\phi_{\theta} \tau \left(\mathbf{x}_{i} \right), y \right) \right] \simeq \mathbb{E}_{\mathbf{x}_{i} \sim P_{\mathcal{T}}} \left[\ell \left(\phi_{\theta} s \left(\mathbf{x}_{i} \right), y \right) \right],$$

s.t. $\theta^{\mathcal{T}} = \operatorname*{arg\,min}_{\theta^{\mathcal{T}}} \mathcal{L}^{\mathcal{T}}(\theta^{\mathcal{T}}) = \operatorname*{arg\,min}_{\theta^{\mathcal{T}}} \frac{1}{N_{\mathcal{T}}} \sum_{(\mathbf{x}_{i}, y) \in \mathcal{T}} \ell \left(\phi_{\theta} \tau \left(\mathbf{x}_{i} \right), y \right),$
 $\theta^{\mathcal{S}} = \operatorname*{arg\,min}_{\theta^{\mathcal{S}}} \mathcal{L}^{\mathcal{S}}(\theta^{\mathcal{S}}) = \operatorname*{arg\,min}_{\theta^{\mathcal{S}}} \frac{1}{N_{\mathcal{S}}} \sum_{(\mathbf{x}_{i}, y) \in \mathcal{S}} \ell \left(\phi_{\theta} s \left(\mathbf{x}_{i} \right), y \right),$

where P_T represents the real distribution of the test dataset.

Exsting Methods

Existing DC methods [1-4] first initialize the dataset $S \in \mathbb{R}^{N_S \times D \times H \times W}$ as a set of learnable parameters in high-dimensional pixel space. N_s : the number of synthetic images

- C: channels
- *H*: image's height
- *W*: image's width

Optimization:

In the first dataset distillation work DD [1], dataset *S* is treated as a hyperparameter in a bi-level optimization problem as follows:

Accuracy matching: $S^* = \underset{S}{\operatorname{arg\,min}} \mathcal{L}^{\mathcal{T}}(\phi_{\theta S})$, subject to $\theta^{S} = \underset{\theta}{\operatorname{arg\,min}} \mathcal{L}^{S}(\phi_{\theta})$,

- Inner loop: Trains a randomly initialized network on the synthetic dataset S until convergence
- **Outer loop**: uses the large target dataset *T* as a validation set optimize *S*

^[1] Dataset distillation. arXiv preprint arXiv:1811.10959, 2018.

^[2] Dataset condensation with gradient matching. ICLR, 2021.

^[3] Dataset condensation with differentiable siamese augmentation. ICML, 2021.

^[4] Dataset condensation with distribution matching. WACV, 2023.

Exsting Methods

SOTA DC methods are based on surrogate objectives to make the model trained on *S* and *T* approximate each other in

Parameter / Gradient / Distribution / ... matching

$$\theta^{\mathcal{T}} \simeq \theta^{\mathcal{S}} \qquad \qquad \phi_{\theta}(\mathbf{x}_{i}) \simeq \phi_{\theta}(\mathbf{s}_{i}) \\ \nabla_{\theta}\mathcal{L}^{\mathcal{T}}(\theta) \simeq \nabla_{\theta}\mathcal{L}^{\mathcal{S}}(\theta)$$

Fig. distribution matching^[2].

[2] Dataset condensation with distribution matching. WACV, 2023.

> Our Motivation

Both the real image and the image generated by traditional DC methods are <u>low-rank</u>, so performing DC in a high-dimensional pixel space is inefficient.

> Our Low-Rank Data Condensation Plugin

We conduct a low-rank decomposition of the content in each channel of an image.

Therefore, the **goal** of data condensation in the low-rank manifold is to optimize $\mathcal{A} \in \mathbb{R}^{N_{S} \times D \times H \times r}$ and $\mathcal{B} \in \mathbb{R}^{N_{S} \times D \times r \times W}$ such that the network $\phi_{\theta^{\Omega}(\mathcal{A},\mathcal{B})}$, trained on the small reconstructed data $\Omega(\mathcal{A},\mathcal{B})$, achieves similar performance to the network $\phi_{\theta^{\tau}}$ trained on the high-dimensional large dataset *T*.

$$\mathbb{E}_{\mathbf{x}_{i} \sim P_{\mathcal{T}}} \left[\ell \left(\phi_{\theta} \tau \left(\mathbf{x}_{i} \right), y \right) \right] \simeq \mathbb{E}_{\mathbf{x}_{i} \sim P_{\mathcal{T}}} \left[\ell \left(\phi_{\theta} \alpha_{(\mathcal{A},\mathcal{B})} \left(\mathbf{x}_{i} \right), y \right) \right],$$

s.t. $\theta^{\mathcal{T}} = \operatorname*{arg\,min}_{\theta^{\mathcal{T}}} \mathcal{L}^{\mathcal{T}} (\theta^{\mathcal{T}}) = \operatorname*{arg\,min}_{\theta^{\mathcal{T}}} \frac{1}{N_{\mathcal{T}}} \sum_{(\mathbf{x}_{i}, y) \in \mathcal{T}} \ell \left(\phi_{\theta^{\mathcal{T}}} (\mathbf{x}_{i}), y \right),$
 $\theta^{\Omega(\mathcal{A},\mathcal{B})} = \operatorname*{arg\,min}_{\theta^{\Omega(\mathcal{A},\mathcal{B})}} \mathcal{L}^{\Omega(\mathcal{A},\mathcal{B})} (\theta^{\Omega(\mathcal{A},\mathcal{B})}) = \operatorname*{arg\,min}_{\theta^{\Omega(\mathcal{A},\mathcal{B})}} \frac{1}{N_{\mathcal{S}}} \sum_{(\mathcal{A}_{i}\mathcal{B}_{i}, y) \in \Omega(\mathcal{A},\mathcal{B})} \ell \left(\phi_{\theta^{\Omega(\mathcal{A},\mathcal{B})}} (\mathcal{A}_{i}\mathcal{B}_{i}), y \right),$

$$\mathbf{x}_i = \mathcal{A}_i \mathcal{B}_i = [\mathcal{A}_{i,1} \mathcal{B}_{i,1} | \dots | \mathcal{A}_{i,D} \mathcal{B}_{i,D}] \in \mathbb{R}^{D \times H \times W}$$

> Incorporating Low-rank DC Plugin to SOTA Methods

Our proposed low-rank manifolds DC plugin can be easily incorporated into existing DC solutions.

• LoDC: Low-rank Dataset Condensation with Gradient Matching

$$\min_{\mathcal{A},\mathcal{B}} E_{\theta_0 \sim P_{\theta_0}} \left[\sum_{t=1}^{T_{in}} d\left(\nabla_{\theta} \mathcal{L}^{\mathcal{T}}\left(\theta_t | \mathcal{T}\right), \nabla_{\theta} \mathcal{L}^{\Omega(\mathcal{A},\mathcal{B})}\left(\theta_t | \Omega(\mathcal{A},\mathcal{B})\right) \right) \right],$$

• LoDM: Low-rank Dataset Condensation with Distribution Matching

$$\min_{\mathcal{A},\mathcal{B}} \mathbb{E}_{\theta_0 \sim P_{\theta_0}} \left[d \left(\frac{1}{N_{\mathcal{T}}} \sum_{i=1}^{N_{\mathcal{T}}} \psi_{\theta_0} \left(\boldsymbol{x}_i \right), \frac{1}{N_{\mathcal{A}\mathcal{B}}} \sum_{i=1}^{N_{\mathcal{A}\mathcal{B}}} \psi_{\theta_0} \left(\mathcal{A}_i \mathcal{B}_i \right) \right) \right],$$

> Data Condensation for Deep Learning

Table 1: Comparison with coreset selection methods and dataset condensation methods.

DataSet	Img/Cls	Ratio%	Coreset Selection Methods			Dataset Condensation Methods					
			Random	Herding	Forgetting	DD	LD	DC	DSA	DM	LoDM(Ours)
MNIST	1	0.017	64.9 ± 3.5	89.2±1.6	35.5 ± 5.6	-	60.9 ± 3.2	91.7±0.5	88.7±0.6	89.7±0.6	91.2±0.4
	10	0.17	95.1±0.9	93.7±0.3	68.1±3.3	79.5±8.1	87.3±0.7	97.4±0.2	97.1±0.1	96.5 ± 0.2	97.7±0.1
	50	0.83	97.9±0.2	94.8±0.2	88.2±1.2	-	93.3±0.3	98.8±0.2	99.2±0.1	97.5±0.5	98.2 ± 0.1
CIFAR10	1	0.02	14.4 ± 2.0	21.5 ± 1.2	13.5 ± 1.2	-	25.7 ± 0.7	28.3 ± 0.5	28.8 ± 0.7	26.0 ± 0.8	43.8±0.8
	10	0.2	26.0 ± 1.2	31.6 ± 0.7	23.3 ± 1.0	36.8 ± 1.2	38.3 ± 0.4	44.9 ± 0.5	51.1 ± 0.5	$48.9{\pm}0.6$	59.8±0.4
	50	1	43.4±1.0	40.4 ± 0.6	23.3 ± 1.1	-	42.5±0.4	53.9 ± 0.5	60.6 ± 0.5	<u>63.0±0.4</u>	64.6±0.1
CIFAR100	1	0.2	4.2±0.3	8.4±0.3	4.5±0.2	-	11.5 ± 0.4	12.8 ± 0.3	13.9 ± 0.3	11.4±0.3	25.6±0.5
	10	2	14.6±0.5	17.3 ± 0.3	15.1 ± 0.3	-	-	25.2 ± 0.3	32.3 ± 0.3	29.7 ± 0.3	37.5±0.8
TinyImageNet	1	0.2	1.4 ± 0.1	2.8 ± 0.2	1.6 ± 0.1	-	-	4.61±0.2	4.79±0.2	3.9 ± 0.2	10.3 ± 0.2
	10	2	5.0 ± 0.2	6.3 ± 0.2	5.1 ± 0.2	-	.	11.6±0.3	14.7 ± 0.2	12.9 ± 0.4	18.3±0.3

Table 4: Compare with other advanced dataset condensation methods.

	MTT	IDC-I	IDC	HaBa	RememberThePast
CIEAP10 (Img/Cls=1)	46.3%	36.7%	50.6%	48.3%	66.4%
CIFARIO (IIIg/CIS=1)	LoMTT	LoIDC-I	LoIDC	LoHaBa	LoRememberThePast
	58.7%	49.2%	57.2%	66.1%	68.4%
	MTT	IDC-I	IDC	HaBa	RememberThePast
CIEA P 100 $(Img/Cl_s=1)$	24.3%	16.6%	24.9%	33.4%	-
CITAR100 (IIIg/CIS=1)	LoMTT	LoIDC-I	LoIDC	LoHaBa	LoRememberThePast
	31.0%	26.9%	33.1%	36.1%	_

Observation: By utilizing the same memory, our low-rank LoDM can represent a more significant number of images, which is significantly better than other SOTA dataset compression methods, especially when the sample size of each class is small.

> Data Condensation for Continual Learning

Observation: we observe that in the three subfigures (a-c), GDumb+LoDM achieves the best results. This suggests that our condensed data in a low-rank manifold is also meaningful for continual learning with limited memory.

Thanks!