

Fairly Recommending with Social Attributes: A Flexible and Controllable Optimization Approach

Jinqiu Jin^{1,*} Haoxuan Li^{2,*} Fuli Feng^{1,†} Sihao Ding¹ Peng Wu³ Xiangnan He¹ ¹University of Science and Technology of China ²Peking University ³Beijing Technology and Business University jjq20021015@mail.ustc.edu.cn, hxli@stu.pku.edu.cn, fulifeng93@gmail.com, dsihao@mail.ustc.edu.cn, pengwu@btbu.edu.cn, xiangnanhe@gmail.com

2023/10/31

Background & Motivation (Part 1)

Item-side Group Fairness (IGF) in recommendation:

- It requires the model to treat different item groups similarly
- Existing IGF notions focus on the **direct utility** of item exposures

However, they overlook the user's social utility!

Recommending items to users with different
 social influence may produce varying utilities.

(a) Previous IGF notions

Background & Motivation (Part 2)

We thus introduce social attribute-aware IGF metrics.

- Users exposed to different item groups should have similar social utility.
- For example, the **number of friends** of exposed users...

Background & Motivation (Part 3)

However, optimizing only social metrics may result in varying direct utilities!

- We thus formulate a multi-objective optimization problem.
- Flexible IGF trade-offs & Controllable recommendation accuracy

(a) Previous IGF notions

Social Attributes-Aware IGF

Neighborhood Statistical Parity (NSP): sum of utilities from social network

$$NR(g = g_a) = \frac{\sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} G_{g_a}(i) \cdot \hat{Y}(u, i) \sum_{v \in \mathcal{N}_u} R_v(i)}{\sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} G_{g_a}(i)}, \quad \text{for all} \quad a = 1, \dots, A,$$

• Equal "socially weighted" likelihood of being recommended

Neighborhood Equal Opportunity (NEO):

$$\operatorname{NR}\left(g=g_{a}, y=1\right) = \frac{\sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} G_{g_{a}}(i) \cdot Y(u, i) \cdot \hat{Y}(u, i) \sum_{v \in \mathcal{N}_{u}} R_{v}(i)}{\sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} G_{g_{a}}(i) \cdot Y(u, i)}, \quad \text{for all} \quad a=1, \cdots, A,$$

• Equal "socially weighted" true positive rate (TPR)

NSP = rsd (NR $(g = g_1), \dots, NR (g = g_A))$, Evaluation: NEO = rsd (NR $(g = g_1, y = 1), \dots, NR (g = g_A, y = 1))$.

Multi-Objective Optimization Problem Formulation

(1) Each $\mathcal{L}_i(\theta)$ takes from {SP, EO, NSP, NEO}; *M* is the number of objective.

② Ensure solutions fall within the **preference region**, where $\{s_j \in R_+^M\}$ is a set of **pre-defined unit vectors** to control **trade-offs** among IGF objectives.

③ Penalize instances with accuracy loss exceeding the threshold.

Reference: Lin X, Zhen H L, Li Z, et al. Pareto Multi-Task Learning[J]. In Advances in Neural Information Processing Systems, 2019.

Solving the Problem (Part 1)

Social-Aware Flexible Fair Recommendation with Controllable Accuracy (SoFA)

Step 1: Finding the initial solution.

- Define $I_{\epsilon}(\theta_r) = \{j = 1, \dots, N \mid \mathcal{G}_j(\theta_r) \geq -\epsilon\}$ (indices violating region constraints)
- Solve the problem: $(d_r, \alpha_r) = \underset{d, \alpha \in R}{\operatorname{arg\,min}} \alpha + \frac{1}{2} \|d\|^2$, s.t. $\nabla \mathcal{G}_j(\theta_r)^T d \leq \alpha, \ j \in I_{\epsilon}(\theta_r)$.
- Gradient-based update: $\theta_{r_{t+1}} = \theta_{r_t} + \eta_r d_{r_t}$

• Compute d_t from θ_t to θ_{t+1} by solving:

 $egin{aligned} & \mathbf{d}_{r_t} \ & (\mathbf{d}_t, lpha_t) = rgmin_{\mathbf{d}, lpha \in R} lpha + rac{1}{2} \| \mathbf{d} \|^2 \ & s.t. \
abla \mathcal{L}_i(m{ heta}_t)^T \mathbf{d} \leq lpha, \ i = 1, \cdots, M, \ &
abla \mathcal{G}_j(m{ heta}_t)^T \mathbf{d} \leq lpha, \ j \in I_\epsilon(m{ heta}_t), \ &
abla \mathcal{L}_{ ext{BPR}}(m{ heta}_t)^T \mathbf{d} \leq lpha, \ ext{if } \mathcal{L}_{ ext{BPR}}(m{ heta}_t) \geq \xi. \end{aligned}$

Reference: Jörg Fliege and Benar Fux Svaiter. Steepest Descent Methods for Multicriteria Optimization. Mathematical methods of operations research, 51:479–494, 2000.

Solving the Problem (Part 2)

Dual Problem:
$$\min_{\alpha_{i},\beta_{j},\lambda} \frac{1}{2} \left\| \sum_{i=1}^{M} \alpha_{i} \nabla_{\theta_{t}} \mathcal{L}_{i}(\theta_{t}) + \sum_{j \in I_{\epsilon}(\theta_{t})} \beta_{j} \nabla_{\theta_{t}} \mathcal{G}_{j}(\theta_{t}) + \lambda \cdot \mathbb{I}(\mathcal{L}_{BPR}(\theta_{t}) \geq \xi) \nabla_{\theta_{t}} \mathcal{L}_{BPR}(\theta_{t}) \right\|$$

s.t.
$$\sum_{i=1}^{M} \alpha_{i} + \sum_{j \in I_{\epsilon}(\theta_{t})} \beta_{j} + \lambda \cdot \mathbb{I}(\mathcal{L}_{BPR}(\theta_{t}) \geq \xi) = 1, \quad \text{(can be solved by MGDA)}$$

According to **KKT conditions**, we have:

- If θ_t is Pareto optimal, no direction simultaneously improves all objectives.
- Otherwise, $\nabla \mathcal{L}_i(\theta_t)^T d^* \leq \alpha^* \leq -\|d^*\|^2 < 0, \ i = 1, \cdots, M,$ $\nabla \mathcal{G}_j(\theta_t)^T d^* \leq \alpha^* \leq -\|d^*\|^2 < 0, \ j \in I_{\epsilon}(\theta_t),$ $\nabla \mathcal{L}_{BPR}(\theta_t)^T d^* \leq \alpha^* \leq -\|d^*\|^2 < 0, \ \text{if } \mathcal{L}_{BPR}(\theta_t) \geq \xi,$
- d^* decreases all IGF losses & recommendation loss (when $\mathcal{L}_{BPR}(\theta_t) \geq \xi$).

Experimental Results (Part 1)

Table 1: Performance comparison using SP and NSP as IGF notions, where SoFA is implemented with five preference regions. The best and second best results are bolded and underlined, respectively.

8	KuaiRec				Epinions			
	N@5↑	SP↓	NSP↓	$F1SP \downarrow_{deg}$	N@5↑	SP↓	<mark>NSP↓</mark>	$F1SP\downarrow_{deg}$
BPRMF	0.2426	0.0966	0.1119	0.1037 49.2°	0.0443	0.0252	0.0286	0.0268 48.6°
+ SP Reg + NSP Reg + SP&NSP Reg	$\begin{array}{c} 0.2389 \\ 0.2279 \\ 0.2369 \end{array}$	$\frac{0.0062}{0.0366}\\ 0.0090$	$\begin{array}{c} 0.0168 \\ 0.0142 \\ 0.0245 \end{array}$	$\frac{0.0091}{0.0205}_{\begin{array}{c} 21.2^{\circ} \\ 69.8^{\circ} \end{array}}^{\begin{array}{c} 69.7^{\circ} \\ 21.2^{\circ} \\ 69.8^{\circ} \end{array}}$	$\frac{0.0450}{0.0378}\\0.0448$	$\begin{array}{c} 0.0140 \\ 0.0224 \\ 0.0154 \end{array}$	$\begin{array}{c} 0.0196 \\ 0.0188 \\ 0.0205 \end{array}$	$\begin{array}{c} 0.0163 \\ _{54.5^\circ} \\ 0.0205 \\ _{40.0^\circ} \\ 0.0176 \\ _{53.2^\circ} \end{array}$
+ SP Post + NSP Post + SP&NSP Post	$\begin{array}{c} 0.2412 \\ 0.2348 \\ 0.2405 \end{array}$	$\begin{array}{c} 0.0388 \\ 0.0844 \\ 0.0817 \end{array}$	$\begin{array}{c} 0.0545 \\ 0.0311 \\ 0.0562 \end{array}$	$\begin{array}{c} 0.0454 \\ _{54.5^\circ} \\ 0.0455 \\ _{20.3^\circ} \\ 0.0666 \\ _{34.5^\circ} \end{array}$	$\begin{array}{c} 0.0445 \\ 0.0398 \\ 0.0443 \end{array}$	$\begin{array}{c} 0.0141 \\ 0.0212 \\ 0.0152 \end{array}$	$\begin{array}{c} 0.0196 \\ \underline{0.0185} \\ 0.0207 \end{array}$	$\begin{array}{c} 0.0164 \\ _{54.2^\circ} \\ 0.0197 \\ _{41.2^\circ} \\ 0.0175 \\ _{53.7^\circ} \end{array}$
MOOMTL	0.2229	0.0069	0.0238	0.0107 73.8°	0.0446	0.0138	0.0193	0.0161 54.40
SoFA region 0 SoFA region 1 SoFA region 2 SoFA region 3 SoFA region 4	$\begin{array}{c} 0.2349 \\ 0.2376 \\ 0.2329 \\ \underline{0.2413} \\ 0.2402 \end{array}$	0.0296 0.0179 0.0103 0.0074 0.0046	0.0096 0.0105 0.0146 0.0194 0.0227	$\begin{array}{c} 0.0145 \\ 18.0^{\circ} \\ 0.0133 \\ 30.4^{\circ} \\ 0.0121 \\ 54.8^{\circ} \\ 0.0107 \\ 69.1^{\circ} \\ 0.0077 \\ 78.5^{\circ} \end{array}$	0.0364 0.0441 0.0451 0.0427 0.0185	0.0909 0.0326 0.0153 <u>0.0118</u> 0.0095	0.0294 0.0225 0.0210 0.0177 0.0314	0.0445 17.9° 0.0266 34.6° 0.0177 53.9° 0.0142 56.3° 0.0146 73 1°

Experimental Results (Part 2)

• Trade-offs between (a) IGF metrics, (b) fairness and accuracy on KuaiRec.

Conclusion

- We propose two **social attribute-aware IGF metrics**, named **NSP and NEO**, to study the item exposure utility gained from user social network.
- We formalize a multi-objective optimization problem to achieve flexible trade-off between the direct and social utility with controllable accuracy.
- We propose an algorithm called **SoFA** to solve the problem, **theoretically** show its ability to find **Pareto optimal solutions** with varying trade-offs.
- We conduct **extensive experiments** on two real-world datasets, validating the **effectiveness** of our proposal.