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General problem setup

• Data Z = (X,Y ) ∈ Z distributed according to µ, where Y ∈ {1, . . . ,K} is the label

• Training dataset S = {Z1, . . . , Zn} ∼ µ⊗n

• Randomized algorithm A : Zn 7→ W

• Model w for every x makes the prediction Ŷ ∼ PŶ |X=x,W=w

• Loss function ℓ(z, w) = EŶ ∼P
Ŷ |X,W

(Ŷ |x,w)

[
1{y ̸=Ŷ }

]
• Empirical risk: L̂(s, w) := 1

n

n∑
i=1

ℓ(zi, w) and Population risk: L(w) := EZ∼µ[ℓ(Z,w)]

The goal is to study generalization error:

gen(S,W ) := L(W )− L̂(S,W )
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Overview of results

• One-step prediction model:

• a new notion of minimum description

length (MDL) of predicted labels

• Generalization bound:√
2×MDL(Predicted Labels)

n

• Two-step prediction model:

• a new notion of MDL of latent variables

• Generalization bound:

2

√
2×MDL(Latent Variables) +K + 2

n

• Practical implications: suggests new

symmetric data-dependent priors

Y X Ŷ

WS training

Y UX Ŷ

     W=(W ,W )e dS training
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One-step prediction

• Approach. Extension of compressibility framework of Blum & Langford (2003) by considering:

• block-coding or information-theoretic compression

• lossy compression or rate-distortion analysis

• General idea. Consider a given training dataset S and ghost dataset S′, that are rearranged

in an indistinguishable manner as Z2n.

• If the set of rearranged predictions of S and S′ can be “described” using few bits, then

the algorithm generalizes well.

• To “describe” the predictions, we use source coding literature in information theory

and in particular the information theoretic covering lemma.

• This introduces a new notion of MDL:

DKL

(
P⊗2n

Ŷ |X,W
(Ŷ, Ŷ′|X,X′,W )

∥∥∥∥Q)
,

for some appropriately “symmetric” prior Q over Ŷ 2n.
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Rearrangement strategies for one-step prediction model

• Type I symmetry. (Zi,Zi+n) is distributed uniformly over {(Zi, Z
′
i), (Z

′
i, Zi)}.

• We derive results similar to CMI (Steinke & Zakynthinou, 2020) and f-CMI

(Harutyunyan et al., 2021) literature

• Makes a connection between frameworks of Blum-Langford and CMI

• Type II symmetry. Z2n is a a random permutation (reshuffle) of (S, S′).

• new results in terms of the function

hD(x, x′) := 2hb

(x+ x′

2

)
− hb(x)− hb(x

′),

which is two times Jensen-Shannon divergence between two binary Bernoulli

distributions with parameters x and x′.

• The bounds are O(1/n) for the realizable setup.

• Lossy compressibility
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Two-step prediction model

• Suitable for optimization:

• Encoder: guarantees the good generalizability by

extracting “good” representations,

• Decoder: minimizes the empirical risk.
Y UX Ŷ

     W=(W ,W )e dS training

• Information bottleneck principle: I(U ;Y )− βI(U ;X)

• I(U ;X) is perceived to capture MDL and hence the generalization performance,

• I(U ;Y ) captures the “relevance” for prediction and hence the empirical risk performance.

• Information bottleneck critics:

• no non-vacuous theoretical guarantees,

• Experimental evidence shows dependence of the generalization error on the so-called

geometrical compression rather than I(U ;X),

• Mutual information is invariant to bijection and does not reflect the “structure” or

“simplicity” of the encoder/decoder.
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Main result

Generalization Bound for Representation Learning Algorithms

ES,W [gen(S,W )] ≤ 2

√√√√2ES,S′,We

[
DKL

(
P⊗2n
U|X,We

(U,U′|X,X′,We)
∥∥∥Q )]

+K + 2

n
,

where Q is a type-III symmetric prior.

• The bound only depends on the encoder and complexity of the latent variables.

• While the mutual information captures the information leakage, the above KL-divergence

captures the encoder structure.

• The lossy version explains the geometrical compression.
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Experimental implications

• In Variational IB, the prior is fixed, e.g. N (0m, Im).

• In contrast, inspired by our results, we introduce new symmetric priors. These priors

• are data-dependent,

• are “learned” along the iterations,

• can be applied in “lossless” and “lossy” manner.

7


