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Recent successes in RL
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Markov decision process (MDP)

• A collection of MABs indexed by state s ∈ S.

• At time step t, an agent observes the state st, selects an
action at ∼ π(·|st), and then receives a reward r(st, at).

• The environment transitions to a new state st+1 ∼ P (·|st, at).

state st

action at

state st+1 action at+1
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Reinforcement learning (RL)

Reinforcement Learning: online vs offline

online offline

Both have limitations!
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Online RL vs Offline RL

Limitations:

• Pure online RL: overlooks all the information in the past
data and might be overly restrictive.

• Pure offline RL: the concentrability requirement might be
too stringent and thus fragile.

What if the agent has access to an offline dataset, while
(limited) online data collection is also permitted? → Hybrid

RL!

Does hybrid RL allow for improved sample complexity compared to
pure online or offline RL?
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Setting

Episodic finite-horizon MDPs:

• MDP M = {S,A, H, P = {Ph}Hh=1, {rh}Hh=1, ρ}.

• Ph,s,a := Ph(·|s, a) is the transition probability.

• rh : S ×A → [0, 1] is the reward function.

• ρ ∈ ∆(S) is the initial distribution.
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Setting

Policy and value function:

• π = {πh}Hh=1 where πh : S → ∆(A) is the Markovian policy.

• value function V π
h (s) := Eπ

[∑H
h′=h rh′(s, a) | sh = s

]
(V π
h (µ) := Es∼µ[V π

h (s)]).

• Q function Qπh(s, a) := Eπ
[∑H

h′=h rh′(s, a) | sh = s, ah = a
]
.

• there exists an optimal deterministic policy π? such that

V ?
h (s) := max

π
V π
h (s) = V π?

h (s),

Q?h(s, a) := max
π

Qπh(s, a) = Qπ
?

h (s, a).

• occupancy distribution:
dπh(s, a) := P (sh = s, ah = a | π) , dπh(s) := P (sh = s | π)
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Sampling Mechanism

Hybrid RL: assumes access to a historical dataset as well as the
ability to further explore the environment.

• offline data: Doff = {τk,off}1≤k≤Koff where each trajectory

τk,off =
(
sk,off
h , ak,off

h

)H
h=1

is i.i.d. sampled from an unknown

mixture of policies πoff = Eπ∼µoff [π]

• we use doff
h (s, a) to denote P

(
sk,off
h = s, ak,off = a

)
.

• online exploration: the learner is able to sample Kon

trajectories sequentially where the initial state is generated
independently from ρ.

• total sample complexity: Koff +Kon.
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Single-Policy Partial Concentrability

Single-policy concentrability requires the offline dataset to cover all
the state-action pairs visited by the optimal policy → too strong!

Definition: Single-Policy Partial Concentrability

For any σ ∈ [0, 1], the single-policy partial concentrability
coefficient C?(σ) of the offline dataset Doff is defined as

C?(σ) := min

{
max

1≤h≤H
max

(s,a)∈Gh

dπ
?

h (s, a)

doff
h (s, a)

∣∣∣∣ {Gh}1≤h≤H ⊆ G(σ)

}
,

where

G(σ) :=

{
{Gh}1≤h≤H ⊆ S ×A

∣∣∣∣ 1

H

H∑
h=1

∑
(s,a)/∈Gh

dπ
?

h (s, a) ≤ σ
}
.
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Single-Policy Partial Concentrability

• C?(σ) allows a fraction of the state-action space reachable by
π? to be insufficiently covered (G(σ)).

• Gh corresponds to a set of state-action pairs that undergo
reasonable distribution shift while the total occupancy
density of the uncovered state-actions remain under
control (≤ σ).

• C?(σ) is non-increasing in σ. When σ = 0, C?(0) reduces to
single-policy concentrability.

Single-policy partial concentrability is a reasonable generalization
of single-policy concentrability!
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Sample complexity of Pure Online/Offline RL

Minimax optimal sample complexity to learn an ε-optimal policy
under single-policy partial concentrability:

• pure online RL: Õ

(
H3SA
ε2

)
.

• pure offline RL: Õ

(
H3SC?(0)

ε2

)
• hybrid RL: ?

We propose a three-staged algorithm to balance between offline
data and online exploration.
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(
H3SA
ε2

)
.

• pure offline RL: Õ
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Algorithm: Step 1

We divide the offline dataset Doff into two halves Doff,1,Doff,2 and
our online exploration consists of three parts, each collecting
Kon

prepare = Kon
imitate = Kon

explore = Kon/3 trajectories.

Step 1: estimation of the occupancy distributions.

• estimating dπ for any policy π: we invoke the estimation
scheme developed in Li et al. (2023)∗, which collects a set of
N sample trajectories for each step h in order to facilitate
estimation of the occupancy distributions.

• required samples: Kon
prepare = NH.

∗Li, G., Yan, Y., Chen, Y., and Fan, J. (2023). Minimax-optimal
reward-agnostic exploration in reinforcement learning.
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Algorithm: Step 1

Step 1: estimation of the occupancy distributions.

• estimating doff : we invoke the empirical estimate using the
Koff/2 sample trajectories from Doff,1:

d̂off
h (s, a) =

2N off
h (s, a)

Koff
1

(
N off
h (s, a)

Koff
≥coff

{
log HSA

δ

Koff

+
H4S4A4 log HSA

δ

N
+
SA

Kon

})
,

where N off
h (s, a) =

∑Koff/2
k=1 1

(
sk,off
h = s, ak,off

h = a
)
,

• cutoff threshold: avoid the state-action pairs that are poorly
covered → Pessimism!
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Algorithm: Step 2

Step 2: online exploration.

Preliminary fact: if we have K independent trajectories sampled
from db, then Li et al. (2023) is able to compute a policy π̂

satisfying V ?(ρ)− V π̂(ρ) . H

[∑
h

∑
s,a

dπ
?

h (s,a)

1/H+Kdb
h(s,a)

] 1
2

.

• imitiating the offline dataset: if the offline dataset is
collected by experts, it has rich information that we can utilize
→ we want to compute a mixture of policies that can cover
doff !

• we want to solve the following optimization problem:

µimitate ≈ arg min
µ∈∆(Π)

H∑
h=1

∑
s∈S

max
a∈A

d̂off
h (s, a)

1
KonH + Eπ′∼µ

[
d̂π
′
h (s, a)

] .
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Algorithm: Step 2

Step 2: online exploration - imitating the offline dataset

• the above optimization problem is equivalent to

µimitate ≈ arg min
µ∈∆(Π)

max
π:S×[H]→∆(A)

H∑
h=1

∑
s∈S

Ea∼πh(·|s)

[
d̂off
h (s, a)

1
KonH

+ Eπ′∼µ
[
d̂π

′
h (s, a)

]].

• use Follow-The-Regularized-Leader (FTRL) to solve this
optimization problem:

πt+1
h (· | s) ∝ exp

(
η

t∑
k=1

d̂off
h (s, ·)

1
KonH + Eπ′∼µk

[
d̂π
′
h (s, ·)

]),
µt+1 ≈ arg min

µ∈∆(Π)

H∑
h=1

∑
s∈S

Ea∼πt+1
h (·|s)

[
d̂off
h (s, a)

1
KonH + Eπ′∼µ

[
d̂π
′
h (s, a)

]],
for t ∈ [Tmax]. η is the learning rate.
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Algorithm: Step 2

Step 2: online exploration - imitating the offline dataset

• output: πimitate = Eπ∼µimitate [π] with µimitate = 1
Tmax

∑Tmax
t=1 µt.

• from the preliminary fact and the performance guarantee of
FTRL, we know πimitate can cover the offline dataset.

• how to compute µt+1 in each iteration: we design a
computationally-efficient Frank-Wolfe-type algorithm to

solve it with iteration complexity O

(
(KonH)4

S2

)
.
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Algorithm: Step 2

Step 2: online exploration

• exploring the unknown environment: we also attempt to
explore the environment in a way that complements the offline
data.

• invoke the reward-agnostic online exploration scheme proposed
in Li et al. (2023), which returns πexplore = Eπ∼µexplore [π].

• With the above two exploration policies πimitate and πexplore,
we execute the MDP to obtain sample trajectories as follows:

1) Execute the MDP Kon
imitate times with πimitate to obtain a

dataset containing Kon
imitate = Kon/3 independent sample

trajectories, denoted by Don
imitate;

2) Execute the MDP Kon
explore times with policy πexplore to obtain a

dataset containing Kon
explore = Kon/3 independent sample

trajectories, denoted by Don
explore.
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Algorithm: Step 3

Step 3: policy learning via offline RL

Once the above online exploration process is completed, we need
to compute a near-optimal policy on the basis of the data in hand.

• Let us look at the following dataset

D = Doff,2 ∪ Don
imitate ∪ Don

explore.

To circumvent the complicated statistical dependency between
Doff,1 and Don

imitate ∪ Don
explore, we only include the second half

Doff,2 of the offline dataset Doff due to the fact that Doff,2 is
statistically independent from Don

imitate ∪ Don
explore.

• We invoke the pessimistic model-based offline RL algorithm
proposed in Li et al. (2023) to compute the final policy
estimate π̂.
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Full Algorithm
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Sample complexity

Theorem (Sample complexity of learning an ε-optimal policy)

Consider δ ∈ (0, 1) and ε ∈ (0, H]. Choose the algorithmic parameters such that

η =

√
logA

2Tmax(KonH)2
and Tmax ≥ 2(KonH)2 logA.

Suppose that

Kon +Koff ≥ c1
H3SC?(σ)

ε2
log2 K

δ

Kon ≥ c1
H3SAmin{Hσ, 1}

ε2
log

K

δ

for some large enough constant c1 > 0. Then with probability at least 1− δ, the
policy π̂ returned by Algorithm 1 satisfies

V ?1 (ρ)− V π̂(ρ) ≤ ε,

provided that Kon and Koff both exceed some polynomial poly(H,S,A,C?(σ), log K
δ

)
(independent of ε).
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Sample Complexity: Discussion

• In a nutshell, our algorithm yields ε-accuracy as long as

Kon +Koff &
H3SC?(σ)

ε2
log2 K

δ
,

Kon &
H3SAmin{Hσ, 1}

ε2
log

K

δ
,

• let Koff = Kon = K/2 and then the sample complexity bound
simplifies to

Õ

(
min
σ∈[0,1]

{
H3SAmin{Hσ, 1}

ε2
+
H3SC?(σ)

ε2

})
=: Õ

(
min
σ∈[0,1]

fmixed(σ)

)
(1)
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Sample Complexity: Comparison with Pure Online RL

• now look at pure online RL, corresponding to the case where
K = Kon (so that all sample episodes are collected via online
exploration). In this case, the minimax-optimal sample
complexity for computing an ε-optimal policy is known to be

Õ

(
H3SA

ε2

)
= Õ

(
fmixed(1)

)
(2)

• The sample complexity of pure online RL (2) is clearly worse
than hyrid RL (1).

• For instance, if there exists some very small σ � 1/H obeying
C?(σ) . 1, then the ratio of (1) to (2) is at most
Hσ + 1

A � 1.

Hybrid RL improves the sample complexity with respect to
pure online RL!
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(
fmixed(1)

)
(2)

• The sample complexity of pure online RL (2) is clearly worse
than hyrid RL (1).

• For instance, if there exists some very small σ � 1/H obeying
C?(σ) . 1, then the ratio of (1) to (2) is at most
Hσ + 1

A � 1.

Hybrid RL improves the sample complexity with respect to
pure online RL!

21



Sample Complexity: Comparison with Pure Offline RL

• In the pure offline case where K = Koff , the minimax sample
complexity is known to be

Õ

(
H3SC?(0)

ε2

)
= Õ

(
fmixed(0)

)
(3)

for any target accuracy level ε, which is apparently larger than
(1) in general.

• In particular, recognizing that C?(0) =∞ in the presence of
incomplete coverage of the state-action space reachable by
π?, we might harvest enormous sample size benefits.

Hybrid RL also improves the sample complexity with respect
to pure offline RL!

22



Sample Complexity: Comparison with Pure Offline RL

• In the pure offline case where K = Koff , the minimax sample
complexity is known to be

Õ
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Discussion about the algorithm

In addition to the sample complexity advantages, the proposed
hybrid RL enjoys several attributes that could be practically
appealing:

• Adaptivity to unknown optimal σ : our algorithm does not
rely on any knowledge of σ and automatically identifies the
optimal σ that minimizes the function fmixed(σ).

Our algorithm can automatically identify the optimal
trade-offs between distribution mismatch and inadequate

coverage!
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Discussion about the algorithm

• Reward-agnostic data collection: the online exploration
procedure employed in our algorithm does not require any
prior information about the reward function. The reward
function is only queried at the last step to output the learned
policy.

This enables us to perform hybrid RL in a reward-agnostic
manner!
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Discussion about the algorithm

• Strengthening behavior cloning: our algorithm does not
rely on prior knowledge about πoff and is capable of finding a
mixed exploration policy πimitate that inherits the advantages
of the unknown behavior policy.

• In behavior cloning where the offline dataset Doff is generated
by an expert policy, with C? = C?(0) ≈ 1, the supplement of
online data collection improves behavior cloning by lowering

the statistical error from
√

H3SC?

Koff
to
√

H3SC?

Koff+Kon
, together

with an executable learned policy πimitate.

Our algorithm provides a method to strengthen behavior
cloning!
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Conclusion

Takeaway: hyrid RL can indeed achieves better sample complexity
compared against pure online and pure offline RL. The key is to
balance between the offline data and online explorations.
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