Distributionally Robust Skeleton Learning of Discrete Bayesian Networks

Yeshu Li ¹ Brian D. Ziebart ¹

¹Department of Computer Science University of Illinois at Chicago

Nov. 2023

Bayesian Network Skeleton Learning

Discrete Bayesian Networks

Given *n* discrete random variables and a directed acyclic graph \mathcal{G} with parent set \mathbf{Pa}_i for node *i* associated with the *i*-th random variable. A Bayesian network is a distribution factorized according to \mathcal{G} :

$$\mathbb{P}(\boldsymbol{X}) = \mathbb{P}(X_1, X_2, \dots, X_n) \triangleq \prod_{i=1}^n \mathbb{P}(X_i | \mathbf{Pa}_i).$$

Skeleton Learning / Structure Learning

Existing Methods

- **Score-based**: search, dynamic programming, integer linear programming, continuous optimization
- Constraint-based: conditional independence tests
- **Hybrid**: leveraging constraint-based methods to restrict the search space of a score-based method

イロト 不得下 イヨト イヨト

Motivation

Existing methods are either

- relying on strong assumptions (faithfulness)
- computationally expensive (exponential in the number of nodes)
- non-robust (sensitive to data corruption that has large impact on statistical tests)

< □ > < □ > < □ > < □ >

Baseline: a Surrogate Approach

Given encodings \mathcal{E} and a linear structural equation model (SEM) for each X_r :

$$\mathcal{E}(X_r) = \boldsymbol{W}^{*\intercal} \mathcal{E}(\boldsymbol{X}_{\overline{r}}) + \boldsymbol{e}.$$

With true distribution \mathbb{P} :

$$\boldsymbol{W}^* \in \arg \inf_{\boldsymbol{W}} \frac{1}{2} \mathbb{E}_{\mathbb{P}} \| \mathcal{E}(X_r) - \boldsymbol{W}^{\mathsf{T}} \mathcal{E}(\boldsymbol{X}_{\bar{r}}) \|_2^2 \quad \text{s.t.} \quad \boldsymbol{W}_i = \boldsymbol{0} \quad \forall i \in \mathbf{Co}_r.$$

With empirical distribution $\tilde{\mathbb{P}}_m$, a natural regularized empirical risk minimization (ERM) objective for finite samples to estimate \boldsymbol{W}^* is

$$ilde{oldsymbol{W}}\in rg \inf_{oldsymbol{W}} ilde{\mathcal{L}}(oldsymbol{W})\coloneqq rac{1}{2}\mathbb{E}_{ ilde{\mathbb{P}}_m}\|\mathcal{E}(X_r)-oldsymbol{W}^{\intercal}\mathcal{E}(oldsymbol{X}_{ar{r}})\|_2^2+ ilde{\lambda}\|oldsymbol{W}\|_{B,2,1}.$$

Note that the true model does not have to follow a linear SEM form. This is merely for deriving theoretical results.

Li and Ziebart (UIC)

Robust Bayesian Skeleton

Nov. 2023

5/18

Distributionally Robust Skeleton Learning

Learning the Bayesian network skeleton with **distribution robust optimization (DRO)**:

$$\hat{\boldsymbol{W}} \in \arg\inf_{\boldsymbol{W}} \sup_{\mathbb{Q} \in \mathcal{A}} \frac{1}{2} \mathbb{E}_{\mathbb{Q}} \| \mathcal{E}(X_r) - \boldsymbol{W}^{\mathsf{T}} \mathcal{E}(\boldsymbol{X}_{\bar{r}}) \|_{2}^{2}$$

 $\mathcal{A}\subseteq \mathcal{P}(\mathcal{X})$ is an **ambiguity set** typically defined as

$$\mathcal{A}^{\mathsf{div}}_{\varepsilon}(\tilde{\mathbb{P}}) \coloneqq \{\mathbb{Q} \in \mathcal{P}(\mathcal{X}) : \mathsf{div}(\mathbb{Q}, \tilde{\mathbb{P}}) \leq \varepsilon\}$$

- discrepancy measure $div(\cdot, \cdot)$
- ambiguity radius ε

Wasserstein DRO: Formulation

Let the ambiguity set be defined by the Wasserstein distances:

$$W_{p}(\mathbb{P},\mathbb{Q}) := \inf_{\Pi \in \mathcal{M}(\mathcal{X}^{2})} \left\{ \left[\int_{\mathcal{X}^{2}} c^{p}(\boldsymbol{x},\boldsymbol{x}') \Pi(\mathrm{d}\boldsymbol{x},\mathrm{d}\boldsymbol{x}') \right]^{\frac{1}{p}} : \\ \Pi(\mathrm{d}\boldsymbol{x},\mathcal{X}) = \mathbb{P}(\mathrm{d}\boldsymbol{x}), \Pi(\mathcal{X},\mathrm{d}\boldsymbol{x}') = \mathbb{Q}(\mathrm{d}\boldsymbol{x}') \right\}.$$

The dual problem of the primal DRO problem can be written as

$$\inf_{\boldsymbol{W},\gamma\geq 0} \gamma \varepsilon + \frac{1}{m} \sum_{i=1}^{m} \sup_{\boldsymbol{x}\in\mathcal{X}} \frac{1}{2} \|\mathcal{E}(\boldsymbol{x}_{r}) - \boldsymbol{W}^{\mathsf{T}} \mathcal{E}(\boldsymbol{x}_{\bar{r}})\|_{2}^{2} - \gamma \|\mathcal{E}(\boldsymbol{x}) - \mathcal{E}(\boldsymbol{x}^{(i)})\|_{2}^{2}$$

Li and Ziebart (UIC)

A B A B
A B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Wasserstein DRO: Algorithm

Proposition: NP-hardness

The inner supremum problem of the Wasserstein DRO is NP-hard.

Wasserstein DRO: Equivalence to the Baseline

Proposition: Equivalence to Regularized ERM

Let $\ddot{\boldsymbol{W}} := [\boldsymbol{W}; -\boldsymbol{I}_{\rho_r}]^{\mathsf{T}} \in \mathbb{R}^{\rho_{[n]} \times \rho_r}$ with $\boldsymbol{W}_r = -\boldsymbol{I}_{\rho_r}$. If $\gamma \ge \rho_{[n]} \| \ddot{\boldsymbol{W}} \|_F^2$, the Wasserstein DRO problem is equivalent to

$$\inf_{\boldsymbol{W}} \mathbb{E}_{\tilde{\mathbb{P}}_m} \frac{1}{2} \| \mathcal{E}(X_r) - \boldsymbol{W}^{\mathsf{T}} \mathcal{E}(\boldsymbol{X}_{\bar{r}}) \|_2^2 + \varepsilon \rho_{[n]} \| \boldsymbol{\ddot{W}} \|_F^2,$$

which subsumes a linear regression approach regularized by the Frobenius norm as a special case.

Wasserstein DRO: Assumptions

Assumptions:

Assumption 1

For the error vector, $\|\boldsymbol{e}\|_{\infty} \leq \sigma$ and $\|\mathbb{E}_{\mathbb{P}}[|\boldsymbol{e}|]\|_{\infty} \leq \mu$.

Assumption 2

For each node r, the minimum norm of the true weight matrix \mathbf{W}^* for neighbor nodes is lower bounded: $\min_{i \in \mathbf{Ne}_r} \|\mathbf{W}_i\|_F \ge \beta > 0$.

Assumption 3

For each node r, $H_{S_rS_r} \succ 0$, or equivalently, $\Lambda_{\min}(H_{S_rS_r}) \ge \Lambda > 0$ where $\Lambda_{\min}(\cdot)$ denotes the minimum eigenvalue.

Assumption 4

For each node r, $\|\boldsymbol{H}_{\mathcal{S}_{r}^{c}\mathcal{S}_{r}}\boldsymbol{H}_{\mathcal{S}_{r}\mathcal{S}_{r}}^{-1}\|_{B,1,\infty} \leq 1-\alpha$ for some $0 < \alpha \leq 1$.

Wasserstein DRO: Main Results

Theorem 1

Assume $\|\boldsymbol{W}^*\|_{B,2,1} \leq \overline{B}$ holds for some $\overline{B} > 0$ associated with an optimal Lagrange multiplier $\lambda_B^* > 0$. Let $\varepsilon = \varepsilon_0/m$ where *m* is the number of samples. Under Assumptions 1-4, if the number of samples satisfies

$$m = \mathcal{O}\left(\frac{C(\varepsilon_0 + \log(n/\delta) + \log\rho_{[n]})\sigma^2\rho_{\max}^4\rho_{[n]}^3}{\min(\mu^2, 1)}\right),$$

where C depends on α , Λ , and if $\frac{32\mu\rho_{\max}}{\alpha} < \lambda_B^* < \frac{\beta}{(\alpha/(4-2\alpha)+2)\rho_{\max}\sqrt{\rho_{[n]}}}\sqrt{\frac{\Lambda}{4}}$, then any $\delta \in (0, 1]$, $r \in [n]$, with probability at least $1 - \delta$:

- (a) The optimal estimator \hat{W} is unique.
- (b) All the non-neighbor nodes are excluded: $\mathbf{Co}_r \subseteq \hat{\mathbf{Co}}_r$.
- (c) All the neighbor nodes are identified: $\mathbf{Ne}_r \subseteq \hat{\mathbf{Ne}}_r$.
- (d) The true skeleton is successfully reconstructed: $\mathcal{G}_{skel} = \hat{\mathcal{G}}_{skel}$.

Kullback-Leibler DRO: Formulation

Let the ambiguity set be defined by the KL divergence:

$$D(\mathbb{Q} \parallel \mathbb{P}) \coloneqq \int_{\mathcal{X}} \mathsf{ln} \, rac{\mathbb{Q}(\mathrm{d} oldsymbol{x})}{\mathbb{P}(\mathrm{d} oldsymbol{x})} \mathbb{Q}(\mathrm{d} oldsymbol{x}).$$

The dual DRO problem becomes

$$\inf_{\boldsymbol{W},\gamma>0}\gamma \ln \left[\frac{1}{m}\sum_{i\in[m]}e^{\frac{1}{2}\|\mathcal{E}(\boldsymbol{x}_{r}^{(i)})-\boldsymbol{W}^{\mathsf{T}}\mathcal{E}(\boldsymbol{x}_{\bar{r}}^{(i)})\|_{2}^{2}/\gamma}\right]+\gamma\varepsilon,$$

a convex minimization problem.

Kullback-Leibler DRO: Main Results

Theorem 2

Suppose that \hat{W} is a DRO risk minimizer with the KL divergence and an ambiguity radius $\varepsilon = \varepsilon_0/m$. Given the same definitions of $(\mathcal{G}, \mathbb{P})$, \mathcal{G}_{skel} , \bar{B} , λ_B^* , *m* in Theorem 1. Under Assumptions 1-4, if the number of samples satisfies

$$m = \mathcal{O}(\frac{\mathcal{C}(\varepsilon_0 + \log(n/\delta) + \log\rho_{[n]})\sigma^2\rho_{\max}^4\rho_{[n]}^3}{\min(\mu^2, 1)}).$$

where *C* depends on α , Λ while independent of *n*, and if the Lagrange multiplier satisfies the same condition as in Theorem 1, then for any $\delta \in (0, 1]$, $r \in [n]$, with probability at least $1 - \delta$, the properties (a)-(d) in Theorem 1 hold.

イロト イヨト イヨト ・

Experiments: Setup

Contamination models:

- Noise-free model
- Huber's contamination model
- Independent failure model

Datasets:

- Bayesian Network Repository: https://www.bnlearn.com/bnrepository/
- Bayesian Network Portfolio by Malone et al.: http://bnportfolio.cs.helsinki.fi/

- T

Experiments: Results

Dataset	n	m	Noise	ζ	Wass	KL	Reg	MMPC	GRASP	Wass+HC	KL+HC	Reg+HC	MMPC+HC	GRASP+HC	HC
asia	8	1000	Noisefree	0	0.7800†	0.7285†	0.7897†	0.9067	0.8167	0.5123	0.6367	0.5743	0.6667	0.6583	0.6550
asia	8	1000	Huber	0.2	0.7333†	0.7124†	0.7297†	0.5468	0.6570	0.3943	0.3724	0.3487	0.2907	0.3664	0.2183
asia	8	1000	Independent	0.2	0.6933	0.6797	0.6868	0.6359	0.3632†	0.2676	0.2632	0.2581	0.2469	0.1794	0.2443
cancer	5	1000	Noisefree	0	1.0000†	1.0000†	1.0000†	0.6133	0.6133	0.2800	0.2800	0.2800	0.2800	0.2800	0.2800
cancer	5	1000	Huber	0.5	0.9156†	0.8933†	0.9092†	0.6133	0.5357	0.4333	0.3833	0.4143	0.2589	0.2714	0.2589
cancer	5	1000	Independent	0.2	0.9048†	0.9029†	0.8992†	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
earthquake	5	1000	Noisefree	0	0.8447†	0.9333†	0.9778	1.0000	0.9778	0.2000	0.2500	0.2500	0.2500	0.2500	0.2278†
earthquake	5	1000	Huber	0.2	0.7509†	0.7509†	0.7509†	0.5978	0.6583†	0.4618	0.4618	0.4618	0.3860	0.4547	0.3860
earthquake	5	1000	Independent	0.2	0.6786†	0.6350 ⁺	0.6350 ⁺	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
sachs	11	1000	Noisefree	0	0.8357†	0.8402	0.8374†	0.9697	0.7678†	0.4310†	0.4535†	0.4641†	0.5935	0.4112†	0.5873
sachs	11	1000	Huber	0.2	0.7765	0.8064	0.7893	0.7498	0.5663†	0.5194	0.4815	0.4520	0.4736	0.2380	0.5028
sachs	11	1000	Independent	0.5	0.5268†	0.5208†	0.5172†	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
survey	6	1000	Noisefree	0	0.6596	0.6545	0.6506	0.6533	0.1714†	0.1789	0.1789	0.1789	0.1789	0.0571	0.1789
survey	6	1000	Huber	0.2	0.7303†	0.6778†	0.7095†	0.5396	0.3810	0.1444	0.1444	0.1444	0.1444	0.1516	0.1444
survey	6	1000	Independent	0.2	0.6311†	0.6705†	0.6220†	0.2032	0.0000†	0.1071	0.1071	0.1143	0.1071	0.0000	0.1071
alarm	37	1000	Noisefree	0	0.4750†	0.7863†	0.8042 [†]	0.8530	0.6824†	0.3483†	0.4949†	0.4470†	0.5635	0.4976	0.4494†
alarm	37	1000	Huber	0.2	0.1432†	0.1619†	0.6571+	0.5486	0.1945†	0.2192	0.1680†	0.3148	0.2774	0.2092†	0.2582
alarm	37	1000	Independent	0.2	0.1419†	0.1448†	0.5458†	0.4309	0.2830†	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
voting	17	216	Noisefree	0	N/A	N/A	N/A	N/A	N/A	-2451.8631	-2453.2737	-2453.4091	-2475.5799	-2482.3835	-2456.1489
voting	17	216	Huber	0.2	N/A	N/A	N/A	N/A	N/A	-4418.9731	-4418.9731	-4487.4544	-4450.3941	-4445.0175	-4418.9731
voting	17	216	Independent	0.2	N/A	N/A	N/A	N/A	N/A	-4453.8298	-4453.8298	-4522.5521	-4465.1076	-4473.8612	-4453.8298
backache	32	90	Noisefree	0	N/A	N/A	N/A	N/A	N/A	-1729.8364	-1726.8465	-1710.7248	-1719.5002	-1713.7583	-1729.7991
backache	32	90	Huber	0.2	N/A	N/A	N/A	N/A	N/A	-3186.5001	-3186.5001	-3186.5001	-3186.5001	-3186.5001	-3186.5001
backache	32	90	Independent	0.2	N/A	N/A	N/A	N/A	N/A	-2800.9386	-2800.9386	-2800.9386	-2800.9386	-2800.9386	-2800.9386

Li and Ziebart (UIC)

Robust Bayesian Skeleton

Nov. 2023

15 / 18

Conclusion

We propose a Bayesian network skeleton learning method with

- robustness
- polynomial time complexity
- polynomial sample complexity
- logarithmic sample complexity for bounded-degree graphs
- competitive empirical performance

Future Work

- Efficient implementations and algorithms
- Evaluation results on a larger scale
- Identifiability
- Tighter bounds
- End-to-end learning with deep neural networks

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Thank you!

	Li and	Ziebart ((UIC))
--	--------	-----------	-------	---

Robust Bayesian Skeleton

Nov. 2023

< ロ > < 回 > < 回 > < 回 > < 回 >

3