



# Label-Only Model Inversion Attacks via Knowledge Transfer

Ngoc-Bao Nguyen\*1 Keshigeyan Chandrasegaran\*2‡

Milad Abdollahzaden<sup>1</sup> Ngai-Man Cheung<sup>1</sup>

<sup>1</sup> Singapore University of Technology and Design (SUTD)
<sup>2</sup> Stanford University

<sup>\*</sup> These authors contributed equally.

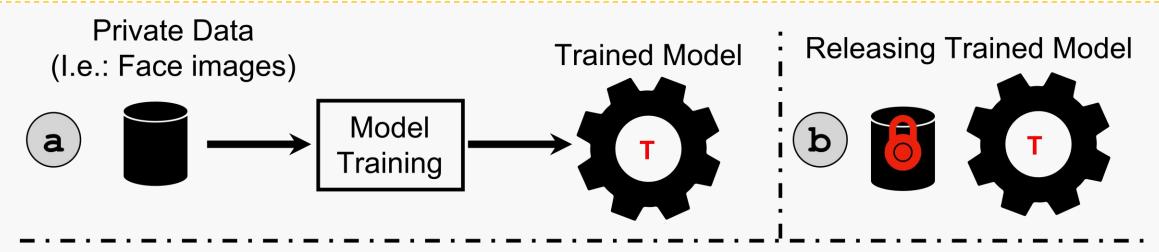
#### **Our contributions**

- We propose Label-only Model inversion via Knowledge Transfer (LOKT) by transferring decision knowledge from the target model to surrogate models and performing white-box attacks on the surrogate models.
- We propose a new T-ACGAN to leverage generative modeling and the target model for effective knowledge transfer.
- We perform analysis to support that our surrogate models are effective proxies for the target model for MI.

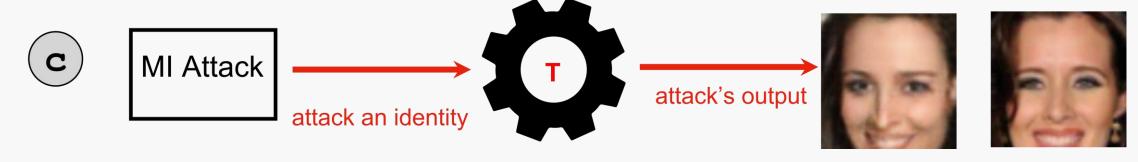







Attack (1)

73.93%

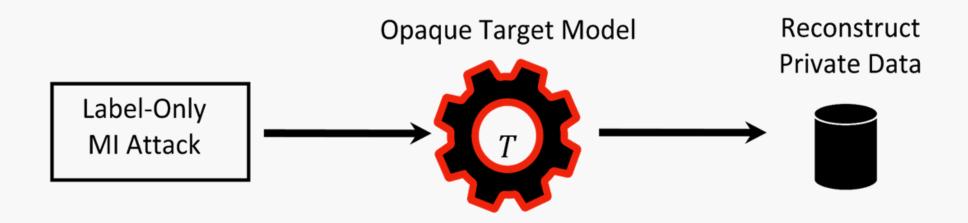

93.93%

#### **Model Inversion (MI)**

**Model inversion (MI) attacks** aim to infer and reconstruct private training data by abusing access to a model.



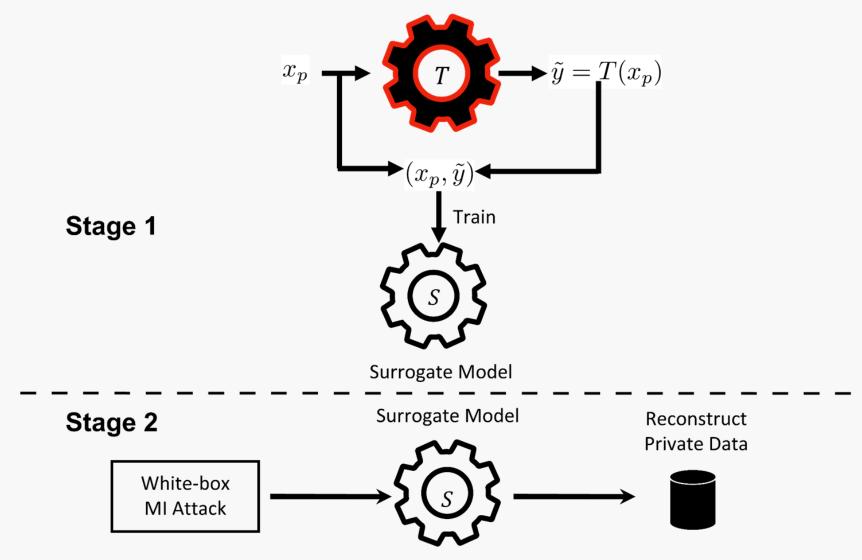
Model Inversion (MI) attack on Target Model to recover Private Training Data



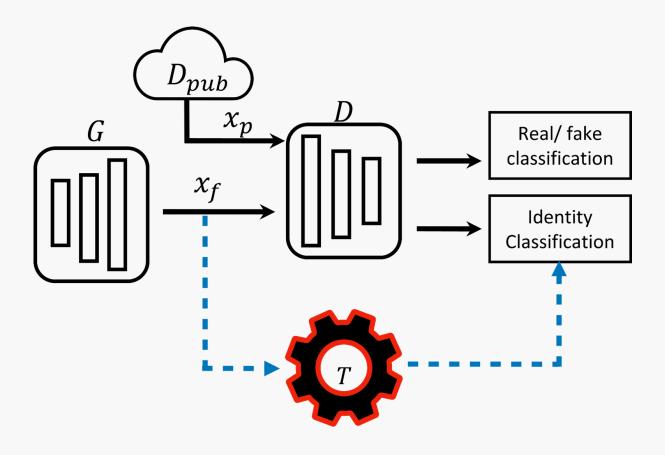

#### **Model Inversion (MI)**

We focus on label-only model inversion attack which is the most challenging setup.

| Criteria   | Architecture /<br>Parameters | Soft-labels | Hard-labels | Concern reg.<br>Queries |
|------------|------------------------------|-------------|-------------|-------------------------|
| White-box  |                              |             |             | Low                     |
| Black-box  | ×                            |             |             | High                    |
| Label-only | X                            | X           |             | High                    |


## **Existing work on Label-only Model Inversion Attack**




SOTA Label-only Model Inversion attacks employ **black-box search on the target model T** to reconstruct private data.

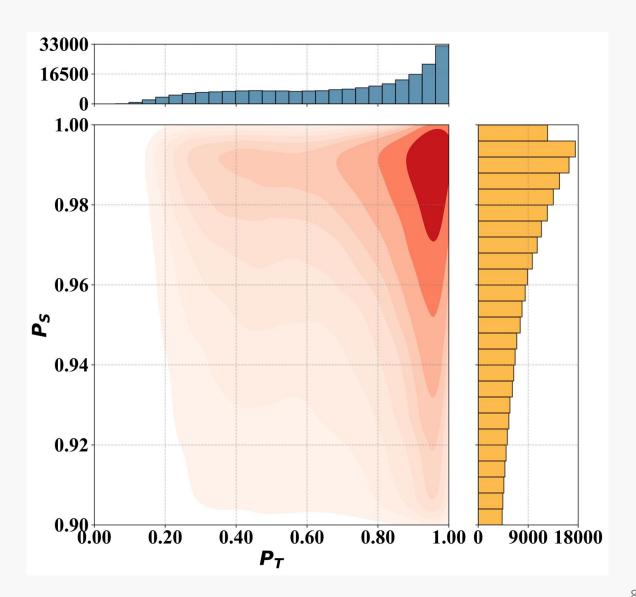
# Label-only Model inversion via Knowledge Transfer (LOKT)

Decision Knowledge Transfer

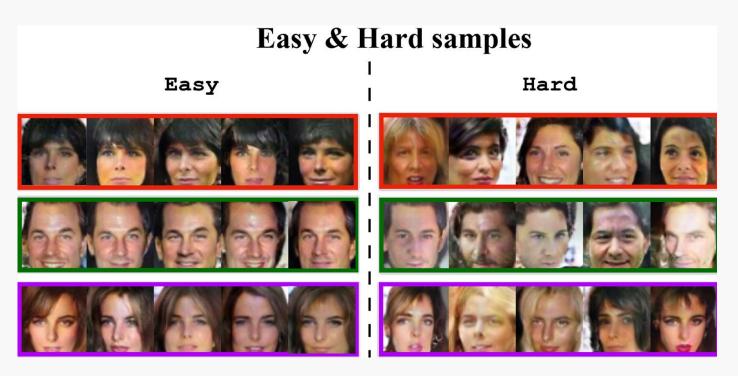


## **Decision Knowledge Transfer using our T-ACGAN**




**Decision Knowledge Transfer** 

$$\mathcal{L}_{D,C} = -E[\log P(s = Fake|x_f)] - E[\log P(s = Real|x_p)] - E[\log P(c = \tilde{y}|x_f)]$$


# **Analysis for justification of surrogate models**

#### **Property P1:**

For high-likelihood samples under S, it is likely that they also have high likelihood under T.



## Analysis for justification of surrogate models



epoch = 01.0 0.8  $0.6^{-}$ Ps  $0.4^{-1}$ 0.2  $0.0^{+}_{0.0}$ 0.2 0.4 0.6 0.8 1.0 Easy Hard

**DNNs Learn Patterns First** 

#### **Model inversion attack results**

| Setup                                                         | Attack |                          | Attack acc. ↑                                            | KNN dt. ↓                            |
|---------------------------------------------------------------|--------|--------------------------|----------------------------------------------------------|--------------------------------------|
| T = FaceNet64                                                 | BREPMI |                          | $73.93 \pm 4.98$                                         | 1284.41                              |
| $\mathcal{D}_{priv}$ = CelebA<br>$\mathcal{D}_{pub}$ = CelebA | LOKT   | $C \circ D$ $S$ $S_{en}$ | $81.00 \pm 4.79$<br>$92.80 \pm 2.59$<br>$93.93 \pm 2.78$ | 1298.63<br>1207.25<br><b>1181.72</b> |
| T = IR152                                                     | BREPMI |                          | $71.47 \pm 5.32$                                         | 1277.23                              |
| $\mathcal{D}_{priv}$ = CelebA<br>$\mathcal{D}_{pub}$ = CelebA | LOKT   |                          | $72.07 \pm 4.03$<br>$89.80 \pm 2.33$<br>$92.13 \pm 2.06$ | 1358.94<br>1220.00<br><b>1206.78</b> |

| Setup                                | Attack |             | Attack acc. ↑                      | KNN dt. ↓ |
|--------------------------------------|--------|-------------|------------------------------------|-----------|
| T = VGG16                            | BREPMI |             | $57.40 \pm 4.92$                   | 1376.94   |
| $\mathcal{D}_{priv} = \text{CelebA}$ | LOKT   | $C \circ D$ | $71.33 \pm 4.39$                   | 1364.47   |
| $\mathcal{D}_{pub} = \text{CelebA}$  |        | S           | $85.60 \pm 3.03$                   | 1252.09   |
|                                      |        | $S_{en}$    | $87.27 \pm 1.97$                   | 1246.71   |
| T = FaceNet64                        | BREPMI |             | $43.00\pm5.14$                     | 1470.55   |
| $\mathcal{D}_{priv}$ = CelebA        |        | $C \circ D$ | $43.27 \pm 3.53$                   | 1516.18   |
| $\mathcal{D}_{pub}^{Pred} = FFHQ$    | LOKT   | S           | $59.13 \pm 2.77$                   | 1437.86   |
| P                                    |        | $S_{en}$    | $\textbf{62.07} \pm \textbf{3.89}$ | 1428.04   |





Attack (1)

73.93%

93.93%

#### Conclusion

- We propose Label-only Model inversion via Knowledge Transfer
   (LOKT) by transferring decision knowledge from the target model to
   surrogate models and performing white-box attacks on the surrogate
   models.
- We propose a new T-ACGAN to leverage generative modeling and the target model for effective knowledge transfer.
- We perform analysis to support that our surrogate models are effective proxies for the target model for MI.

#### Thank you!

Poster Session
Wed 13 Dec 10:45 a.m. CST — 12:45 p.m. CST
Great Hall & Hall B1+B2
#1517

Project page



https://ngoc-nguyen-0.github.io/lokt/