

Synchronized Joint Diffusions

"A photo of a city skyline at night"

NeurIPS 2023

Yuseung Lee Kunho Kim Hyunjin Kim Minhyuk Sung

Text-to-Image Diffusion Models

Pretrained text-to-image diffusion models are limited to generating images of certain sizes.

Stable Diffusion (Stability AI)

Needs for Arbitrary-Size Generation

There are growing demands for generating arbitrary-size images in downstream applications such as Virtual Reality and texture generation.

Virtual Reality (VR) Environment¹

Generating textures for 3D objects²

Expensive Data Acquisition & Training

Training diffusion models for different image sizes would cost substantial time and computing resources.

LAION-5B: A NEW ERA OF OPEN LARGE-SCALE MULTI-MODAL DATASETS

by: Romain Beaumont, 31 Mar, 2022

We present a dataset of 5,85 billion CLIP-filtered image-text pairs, 14x bigger than LAION-400M, previously the biggest openly accessible image-text dataset in the world - see also our <u>NeurIPS2022 paper</u>

Authors: Christoph Schuhmann, Richard Vencu, Romain Beaumont, Theo Coombes, Cade Gordon, Aarush Katta, Robert Kaczmarczyk, Jenia Jitsev

LAION-5B

Expensive Data Acquisition & Training

Training diffusion models for different image sizes would cost substantial time and computing resources.

LAION-5B: A NEW ERA OF OPEN LARGE-SCALE MULTI-

Goal: Zero-shot generation of arbitrary-size images with pretrained diffusion models.

LAION-5B

Image as Montage

Any arbitrary-size image is a composition of multiple fixed-size images.

Image as Montage

Fixed-size images can be generated with pretrained models.

Image Extrapolation [Blended Latent Diffusion, Avrahami et al.]

Sequentially extrapolating images often results in visible seams and repetitive contents.

Joint Diffusion [MultiDiffusion, Bar-Tal *et al.*]

Average noisy latent features in overlapping regions.

. . .

. . .

. . .

"A photo of a mountain range at twilight"

Joint Diffusion [MultiDiffusion, Bar-Tal *et al.*]

Crop the full latent to obtain the latent for each window.

Joint Diffusion [MultiDiffusion, Bar-Tal et al.]

The final output is not coherent.

SyncDiffusion: Synchronized Joint Diffusions

Generate perceptually coherent images in arbitrary sizes.

Compute the coherence in advance based on foreseen output images.

Timestep: t

Background: DDIM [Denoising Diffusion Implicit Models]

Transition from x_t to x_{t-1} is conditioned on both x_t and \overline{x}_0 , where \overline{x}_0 is the predicted denoised output given x_t and timestep t.

Background: DDIM [Denoising Diffusion Implicit Models]

Transition from x_t to x_{t-1} is conditioned on both x_t and \overline{x}_0 , where \overline{x}_0 is the predicted denoised output given x_t and timestep t.

Background: DDIM [Denoising Diffusion Implicit Models]

Transition from \mathbf{x}_t to \mathbf{x}_{t-1} is conditioned on both \mathbf{x}_t and $\mathbf{\overline{x}_0}$, where $\mathbf{\overline{x}_0}$ is the predicted denoised output given \mathbf{x}_t and timestep t.

Observation

Perceptual similarity loss (i.e. LPIPS¹) across foreseen images is aligned with that of the final images.

Foreseen outputs $(\overline{\mathbf{x}}_{\mathbf{0}})$

L = 0.542 > L = 0.350

Final outputs (x₀)

L = 0.591 > L = 0.370

SyncDiffusion

Timestep: t

SyncDiffusion

Timestep: *t*

 $\mathbf{x}_t^{(i)}$

(1) Predict foreseen output: $\bar{\mathbf{x}}_{0}^{(i)} = \phi_{\theta}\left(\mathbf{x}_{t}^{(i)}, t\right)$

(2) Decode latent to image: $D(\bar{\mathbf{x}}_{0}^{(i)})$

SyncDiffusion

Qualitative Results: Text-to-Panorama

MultiDiffusion (Bar-Tal et al.)

SyncDiffusion (Ours)

"Skyline of New York City"

Qualitative Results: Text-to-Panorama

MultiDiffusion (Bar-Tal et al.)

SyncDiffusion (Ours)

"A photo of a rock concert"

Qualitative Results: Text-to-Panorama

MultiDiffusion (Bar-Tal et al.)

SyncDiffusion (Ours)

"An illustration of a beach in La La Land style"

Quantitative Results

Coherence (LPIPS¹, Style Loss²) is improved while preserving the prompt compatibility (CLIP-S³) as the gradient descent weight *w* increases.

¹ Zhang et al., The Unreasonable Effectiveness of Deep Features as a Perceptual Metric, CVPR 2018.

² Gatys et al., Image style transfer using convolutional neural networks, CVPR 2016.

³ Hessel et al., CLIPScore: A Reference-free Evaluation Metric for Image Captioning, EMNLP 2021.

Quantitative Results

Fidelity (GIQA¹) is preserved, while diversity (FID²,KID³) is slightly compromised as the gradient descent weight *w* increases.

² Heusel et al., GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, NeurIPS 2018.

User Study

SyncDiffusion was preferred over the baseline for questions about coherence, image quality and prompt compatibility.

	Coherence (%)	Image Quality (%)	Prompt Compatibility (%)
MultiDiffusion ¹	33.65	42.81	40.50
SyncDiffusion (Ours)	66.35	57.19	59.50

Plug-and-Play Applications

Perspective View

360 Panorama

Bar-Tal et al., MultiDiffusion, ICML 2023. Zhang et al., ControlNet, ICCV 2023. Tang et al., MVDiffusion, NeurIPS 2023.

Synchronized Joint Diffusions

Session 3 | Poster #532 Project Page: <u>https://syncdiffusion.github.io/</u>

NeurIPS 2023

Yuseung Lee Kunho Kim Hyunjin Kim Minhyuk Sung