Eliminating Catastrophic Overfitting Via Abnormal Adversarial Examples Regularization

Runqi Lin, Chaojian Yu, Tongliang Liu

Sydney AI Centre, The University of Sydney

Single-step Adversarial Training (SSAT)

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\max_{\delta\in\Delta} \ell(x+\delta,y;\theta) \right]$$

Equation 1. The min-max optimization of adversarial training.

Figure 1. The adversarial example generated by SSAT^[1].

The University of Sydney

[1] Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572.

Catastrophic Overfitting (CO)

Figure 2. The catastrophic overfitting phenomenon.

Motivation

Figure 3. The training samples belonging to NAE (blue) can effectively mislead the classifier, while AAE (red) cannot. The left/middle panel shows the decision boundary before/after optimizing AAEs.

The Definition of Abnormal Adversarial Example (AAE)

$$\begin{split} \delta &= \operatorname{sign} \left(\nabla_{x+\eta} \ell(x+\eta,y;\theta) \right), \\ x^{AAE} &\stackrel{def}{=} \ell\left(x+\eta,y;\theta \right) > \ell\left(x+\eta+\delta,y;\theta \right). \end{split}$$

Equation 2. The Definition of AAE.

Figure 4. The visualization of AAEs and NAEs loss surface before CO.

Number and Outputs Variation of AAE

Figure 5. The number, the variation of prediction confidence and logits distribution for NAEs, AAEs and training samples.

Abnormal Adversarial Example Regularization (AAER)

$$AAE_CE = \frac{1}{n} \sum_{i=1}^{n} \left(\ell \left(x_i^{AAE} + \eta, y_i; \theta \right) - \ell \left(x_i^{AAE} + \eta + \delta, y_i; \theta \right) \right).$$

$$AAE_L2 = \frac{1}{n} \sum_{i=1}^{n} \left(\|f_{\theta} \left(x_i^{AAE} + \eta + \delta \right) - f_{\theta} \left(x_i^{AAE} + \eta \right) \|_2^2 \right);$$

$$NAE_L2 = \frac{1}{m-n} \sum_{j=1}^{m-n} \left(\|f_{\theta} \left(x_j^{NAE} + \eta + \delta \right) - f_{\theta} \left(x_j^{NAE} + \eta \right) \|_2^2 \right).$$

$$AAER = \left(\frac{n}{m} \cdot \lambda_1\right) \cdot \left(AAE_CE \cdot \lambda_2 + max \left(AAE_L2 - NAE_L2, 0\right) \cdot \lambda_3\right).$$

Equation 3. The optimization objectives of AAER: the number, prediction confidence and logits distribution of AAEs.

Experiments

Table 1. Comparison with competingbaselines on CIFAR-10/100 datasets.

dataset	CIFAR10				CIFAR100			
noise magnitude	8/255	12/255	16/255	32/255	8/255	12/255	16/255	32/255
FreeAT	$76.20 \pm 1.09 43.74 \pm 0.41$	68.07 ± 0.38 33.14 ± 0.62	45.84 ± 19.07 0.00 ± 0.00	61.11 ± 8.41 0.00 ± 0.00	47.41 ± 0.30 22.27 ± 0.33	39.84 ± 0.40 16.57 ± 0.20	3.32 ± 2.48 0.00 ± 0.00	26.2 ± 15.54 0.00 ± 0.00
ZeroGrad	81.60 ± 0.16 47.56 ± 0.16	77.52 ± 0.21 27.34 ± 0.09	79.65 ± 0.17 6.37 ± 0.23	65.48 ± 6.26 0.00 ± 0.00	$53.83 \pm 0.22 \\ 25.02 \pm 0.24$	49.07 ± 0.14 14.76 ± 0.26	50.76 ± 0.02 5.23 ± 0.09	49.38 ± 1.39 0.00 ± 0.00
MultiGrad	81.65 ± 0.16 47.93 ± 0.18	81.09 ± 4.67 9.95 ± 16.97	82.98 ± 3.30 0.00 ± 0.00	70.84 ± 4.53 0.00 ± 0.00	$53.11 \pm 0.34 \\ 25.68 \pm 0.21$	46.81 ± 0.51 16.56 ± 0.56	46.05 ± 8.68 0.00 ± 0.00	28.33 ± 6.48 0.00 ± 0.00
Grad Align	$82.10 \pm 0.78 \\ 47.77 \pm 0.58$	74.17 ± 0.55 34.87 ± 1.00	60.37 ± 0.95 27.90 ± 1.01	25.23 ± 3.41 11.53 ± 3.23	$54.00 \pm 0.44 \\ 25.27 \pm 0.68$	45.83 ± 0.72 18.13 ± 0.71	36.80 ± 0.10 13.77 ± 0.76	15.05 ± 0.07 2.85 ± 1.34
RS-FGSM	$83.91 \pm 0.21 \\ 46.01 \pm 0.18$	66.46 ± 22.80 0.00 ± 0.00	66.54 ± 12.25 0.00 ± 0.00	36.43 ± 7.86 0.00 ± 0.00	$60.29 \pm 1.51 \\ 10.58 \pm 13.10$	18.19 ± 8.51 0.00 ± 0.00	11.03 ± 5.24 0.00 ± 0.00	11.40 ± 8.60 0.00 ± 0.00
N-FGSM	$80.48 \pm 0.21 47.91 \pm 0.29$	71.30 ± 0.12 36.23 ± 0.10	62.96 ± 0.74 27.14 ± 1.44	29.79 ± 3.87 8.30 ± 7.85	$54.92 \pm 0.28 \\ 26.29 \pm 0.41$	46.16 ± 0.13 18.75 ± 0.19	37.93 ± 0.22 14.05 ± 0.07	18.18 ± 4.55 0.00 ± 0.00
RS-AAER	$83.83 \pm 0.27 \\ 46.14 \pm 0.02$	74.40 ± 0.79 32.17 ± 0.16	64.56 ± 1.45 23.87 ± 0.36	31.58 ± 1.13 10.62 ± 0.51	57.71 ± 0.29 25.31 \pm 0.01	44.06 ± 0.93 16.41 ± 0.13	33.10 ± 0.05 11.80 ± 0.17	18.50 ± 1.68 4.90 ± 0.50
N-AAER	80.56 ± 0.35 48.31 ± 0.23	71.15 ± 0.18 36.52 ± 0.10	61.84 ± 0.43 28.20 ± 0.71	27.08 ± 0.02 12.97 ± 0.57	54.47 ± 0.45 26.81 ± 0.13	45.98 ± 0.13 19.03 ± 0.04	36.80 ± 0.14 14.31 ± 0.05	16.95 ± 0.44 5.45 ± 0.14
PGD-2	85.07 ± 0.12 45.27 ± 0.07	78.97 ± 0.23 32.99 ± 0.46	72.31 ± 0.40 24.32 ± 0.64	48.45 ± 0.71 11.24 ± 0.40	60.09 ± 0.20 24.58 ± 0.12	53.46 ± 0.27 17.16 ± 0.21	47.50 ± 0.28 12.69 ± 0.06	31.89 ± 0.69 4.51 ± 0.21
PGD-10 (20)	80.55 ± 0.37 50.67 ± 0.40	72.37 ± 0.31 38.60 ± 0.39	67.20 ± 0.69 29.34 \pm 0.18	34.70 ± 0.67 16.10 ± 0.20	55.05 ± 0.25 27.87 ± 0.12	47.42 ± 0.29 20.29 \pm 0.18	42.39 ± 0.17 15.01 ± 0.21	21.68 ± 0.18 7.39 ± 0.38

Experiments

Table 2. Comparison with competingbaselines on computational overhead.

Method	FreeAT	ZeroGrad	MultiGrad	Grad Align	RS/N-FGSM	RS/N-AAER	PGD-2	PGD-10
Training Time (S)	43.8	11.0	21.7	36.1	11.0	11.2	16.4	59.1

Table 3. Comparison with competingbaselines on WideResNet-34 architecture.

method	RS-FGSM	N-FGSM	RS-AAER	N-AAER	PGD-2	PGD-10
natural accuracy (%)	84.41 ± 0.45	84.67 ± 0.32	87.39 ± 0.14	84.47 ± 0.23	88.68 ± 0.14	85.53 ± 0.22
robust accuracy (%)	0.00 ± 0.00	49.72 ± 0.25	47.58 ± 0.42	50.07 ± 0.53	47.32 ± 0.50	53.70 ± 0.53
training time (S) 98.2		3.2	98	.6	147.1	536.2

Experiments

Table 4. Comparison with competingbaselines on the ImageNet-100 dataset.

method	RS-FGSM	N-FGSM	RS-AAER	N-AAER
natural accuracy (%)	27.10 ± 11.44	38.87 ± 0.17	32.28 ± 1.52	39.52 ± 0.42
robust accuracy (%)	$ 0.00 \pm 0.00$	20.71 ± 0.74	14.22 ± 0.96	20.90 ± 0.34

Table 5. Comparison with competingbaselines on the long training schedule.

method	RS-FGSM	N-FGSM	RS-AAER	N-AAER
natural accuracy (%)	91.21 ± 0.26	83.25 ± 0.04	85.69 ± 0.20	83.23 ± 0.25
robust accuracy (%)	0.13 ± 0.02	36.98 ± 0.34	36.05 ± 0.17	$\textbf{37.38} \pm \textbf{0.16}$

Project Page