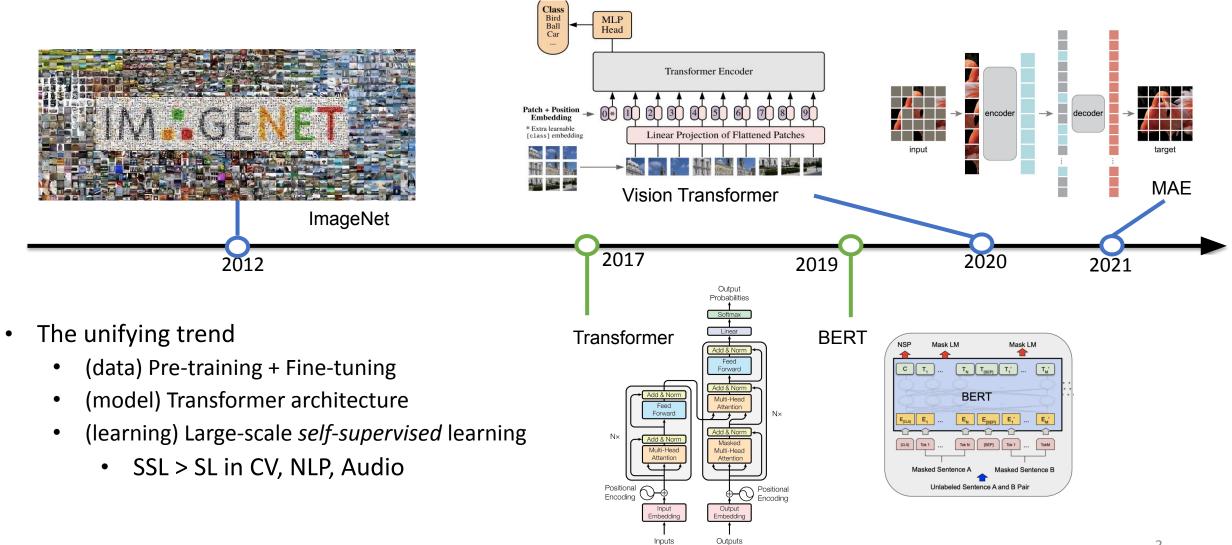
Po-Yao Huang, Vasu Sharma, Hu Xu, Chaitanya Ryali, Haoqi Fan, Yanghao Li, Shang-Wen Li, Gargi Ghosh, Jitendra Malik, Christoph Feichtenhofer

FAIR Labs 2023

Outline

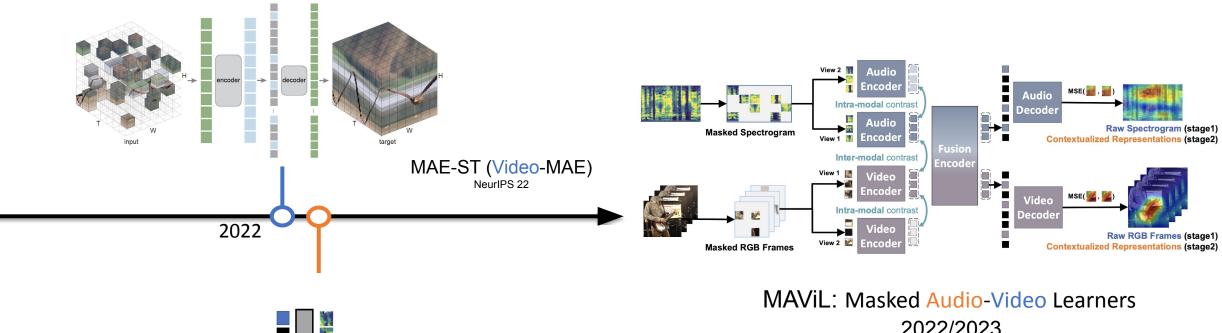
- Background: A unifying trend in single-modal self-supervised learning (SSL)
- MAViL: Masked Audio-Video Learners
 - Prior work in audio-video SSL
 - Motivation: predicting hetereogenous homogenous (aligned) and raw contextualized targets.
- Experimental Results
- Conclusion

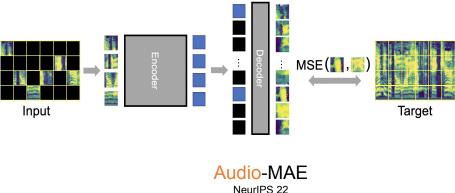
A unifying trend across CV, NLP, Audio



(shifted right)

A unifying trend across CV, NLP, Audio



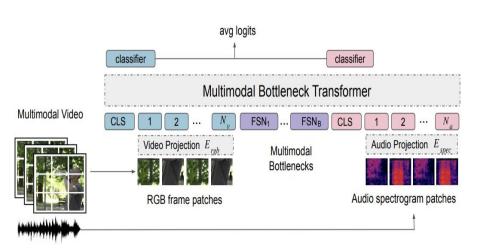


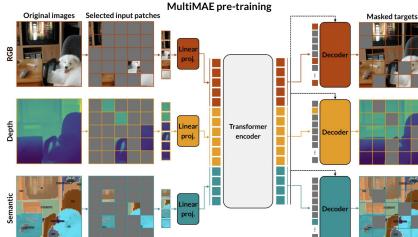
2022/2023

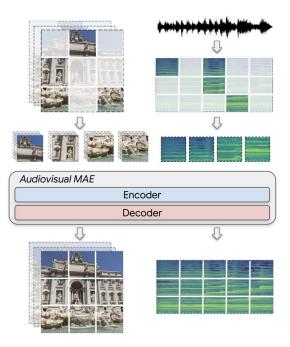
Unique challenges under the multimodal paradigm:

- Diverse and disparate raw inputs to MAE
- · Heterogeneous context in each modality

Related work







MBT (NeurIPS 21)

Constraints:

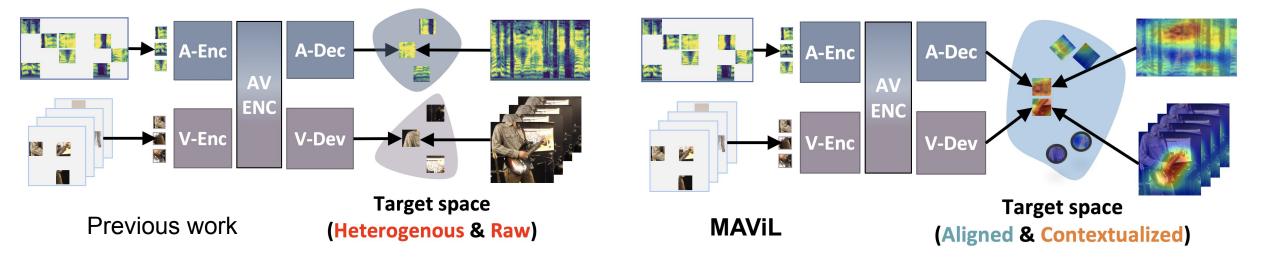
- 1. Supervised (labels required)
- 2. Computation overhead

MultiMAE (ECCV 2022) Constraints:

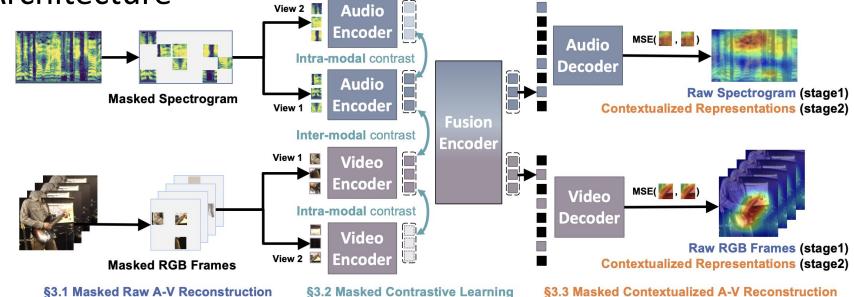
AudioVisual MAE (Arxiv 22)

- 1. Naïve extension of single-modal MAE to multimodal. Limited improvement even training with multimodal context
- 2. Diverse and disparate raw inputs for MAE reconstruction

- Key Motivation and difference to previous multimodal-MAEs
 Reconstructing heterogenous & raw inputs
 - Reconstructing aligned & contextualized representations

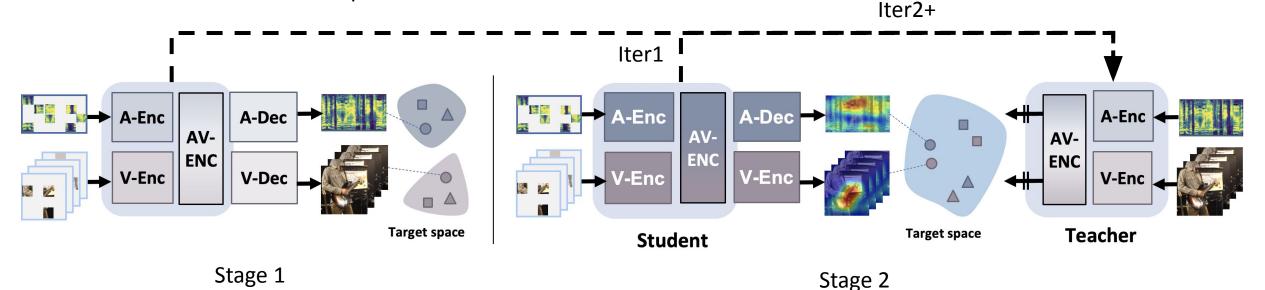


- Reconstructing aligned & contextualized representations
 - Inter-modal and intra-modal masked contrastive learning for promoting alignment between semantically correlated audio and/or video.
 - Train a student under masked view to predict contextualized representations in the aligned latent space generated by a teacher with full-view.
- Model Architecture



•Two-stage training:

- Stage 1: Contrastive objectives and raw A-V reconstruction
- Stage 2: Contrastive objectives and contextualized reconstruction from a Teacher
 - Iteration 1: Use Stage1 MAViL as the teacher
 - Iteration 2+: Use previous MAViL student as the teacher



Experiments

• Pre-training (PT)

- Audioset-2M
 - 2 million 10-sec video recordings in 527 classes
 - Labels are not used (self-supervised pre-training)
 - For each 10-sec audio track
 - 128 Mel-fbanks/ 1024 time windows (stride 10 ms)
 - Shape: 1x1024x128
 - For each 10-sec video track
 - Sample 4-sec under 2fps (8 frames)
 - Shape: 8x3x224x224
- MAViL model
 - ViT-B backbone for Audio/Video
 - 80% Masking Ratio

• Fine-tuning

- A-V Classification
 - Audioset-20K (balanced)
 - Audioset-2M (unbalanced)
 - VGGSound
- Audio-only Classification
 - Speech commands v1
 - ESC-50
- Audio-Video Retrieval
 - YouCook
 - MSR-VTT

Ablation Studies

Method	Audio	Video
A-MAE/V-MAE (baseline)	36.4	17.4
MAViL stage-1		
+ Joint AV-MAE	$36.8_{(+0.4)}$	$17.7_{(+0.3)}$
+ Inter contrast	38.4	21.0
+ Intra and Inter contrast	39.0(+2.2)	$22.2_{(+4.5)}$
MAViL stage-2		
+ Student-teacher learning	41.8(+2.8)	$24.8_{(+2.6)}$

Observation 1: Fusing multimodal info for MAE reconstruction improve 0.3-0.4 mAP Observation 2: Both Inter-modal and Intra-modal contrastive learning help! Observation 3: Reconstructing aligned and contextualized representations provides additional 2.6-2.8 mAP gains!

A-V Classification

		AS-2	20K (m	AP↑)	AS-	2M (m.	AP↑)	VGG	Sound ((Acc.†)
Method	PT	A	V	A+V	Α	V	A+V	Α	V	A+V
Audio-only Models										
Aud-SlowFast [68]	-	-	-	-	-	-	-	50.1	-	-
VGGSound [58]	-	-	-	-	-	-	-	48.8	-	-
PANNs [69]	-	27.8	-	-	43.9	-	-	-		-
AST [64]	IN-SL	34.7	-	-	45.9	-	-	-	-	-
HTS-AT [70]	IN-SL	-	-	-	47.1	-	-	-	-	-
PaSST [71]	IN-SL	_	-	-	47.1	-	-	-	-	-
Data2vec [51]	AS-SSL	34.5	-	-	-	-	-	-	-	-
SS-AST [72]	AS-SSL	31.0	-	-	-	-	-	-	-	-
MAE-AST [73]	AS-SSL	30.6	-	-	-	-	-	-	-	-
Aud-MAE [4]	AS-SSL	37.0	-	-	47.3	-	-	-	-	-
Audio-Video Models	3									
G-Blend [74]	-	29.1	22.1	37.8	32.4	18.8	41.8	-	-	-
Perceiver [75]	-	-	-	-	38.4	25.8	44.2	-	-	-
Attn AV [76]	IN-SL	-	-	-	38.4	25.7	44.2	-	-	-
CAV-MAE [41]	IN-SSL, AS-SSL	37.7	19.8	42.0	46.6	26.2	51.2	59.5	47.0	65.5
MBT [*] [27]	IN21K-SL	31.3	27.7	43.9	41.5	31.3	49.6	52.3	51.2	64.1
MAViL	AS-SSL	41.6	23.7	44.6	48.7	28.3	51.9	60.6	50.0	66.5
MAViL	IN-SSL, AS-SSL	41.8	24.8	44.9	48.7	30.3	53.3	60.8	50.9	67.1

MAViL not only learns strong joint audio-video representations (A+V), but can also improve single modality encoders *without* using the other modality during fine-tuning (A, V).

Audio-Only and Audio-Video Retrieval

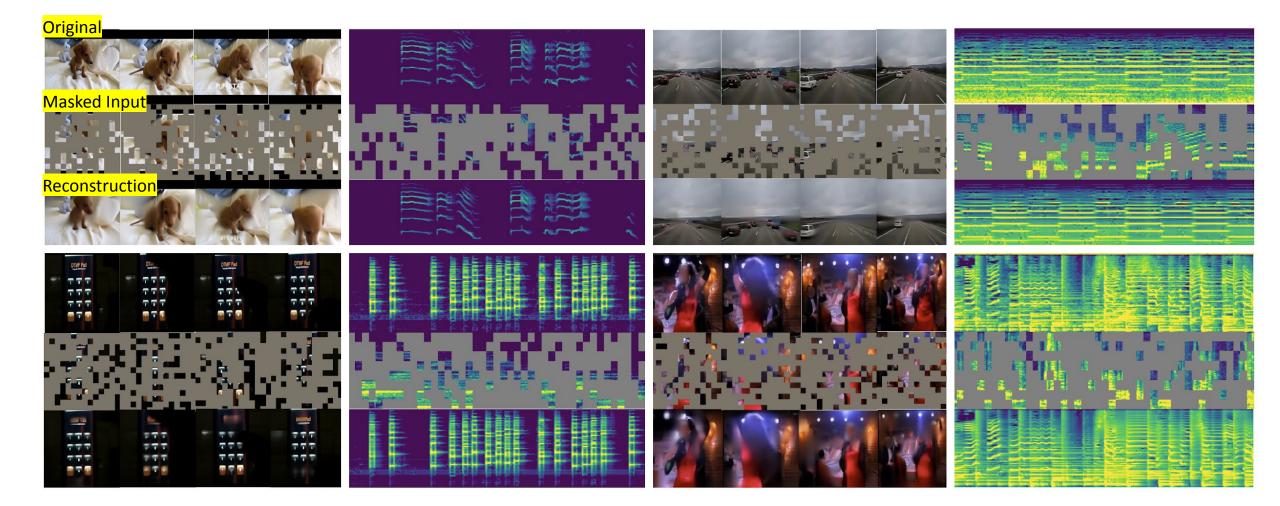
Method	PT	ESC-50	SPC-1		
AST [64]	IN-SL	88.7	95.5		
SS-AST [72]	AS-SSL	88.8	96.0		
Aud-MAE [4]	AS-SSL	94.1	96.9		
MAViL	AS-SSL	94.4	97.3		
MAViL	IN-SSL, AS-SSL	94.4	97.4		
Table 7: Audio-only tasks (Acc. [↑])					

Table /: Audio-only tasks (Acc.)

Method	PT data	MSR-VTT	YouCook
AVLNet [80]	HT100M	20.1	30.7
TVLT [81]	HT100M	22.6	31.8
MAViL	AS-2M	22.8	32.2
MAViL	HT-100M	23.8	33.1

Table 8: Audio-to-video retrieval (R@1⁺)

Qualitative Results:



MAViL Demo

Masked Input

Conclusion

- MAVIL MAE meets contrastive learning in Audio-Video SSL:
 - Complementary information from both audio and video are beneficial in MAE
 - Masking combined with contrastive learning demonstrates remarkable efficiency in audio-video SSL
 - Both intra-modal and inter-modal contrast learning are important
 - In the multimodal paradigm, predicting aligned and contextualized representations proves to be superior to heterogeneous and raw inputs
 - Multimodal (A+V) SSL can also improve single modality encoders without using the other modality during fine-tuning (A, V)
- Future Work:
 - Audio-Video-Text modeling with MAViL