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Background: Clinical Predic2ve Modeling

Acute Embolism

Paroxysmal Atrial Fibrillation

Respiratory Support

Blood Test
Heparin IV

Chest X-ray

Chronic Heart Failure

Discharge

Clinical Event Sequence

• Input: Existing event sequence
• Predict: Occurrence of future event of interest

• E.g., hospital readmission, mortality, diagnosis of heart failure

Whether the patient will 
be readmitted in 15 days?

Predictive Model Future Event of Interest
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Problem: Domain Gap
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• Goal
• Develop a model on the source data that can effecOvely handles potenOal domain shiPs when 

applied to the target data

Domain Generalization (DG)

Jindong Wang et al. Generalizing to Unseen Domains: A Survey on Domain Generalization. IEEE Transactions on Knowledge and Data Engineering, 2022.

Source Data Target Data
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• Existing DG relies on domain IDs
• Patients can be divided into numerous latent domains based on different features

• Existing DG attempts to train a single model
• Patients from different domains possess distinct characteristics and require different treatment approaches

New Challenges in Medical DG
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• Problem: 
• Patients can be categorized into numerous latent domains based on different features
• The categorization can be difficult to obtain and vary across different tasks

• Idea:
• Decouple clinical features
• Discover the domains for each type of feature

Insight 1: Decoupled Domain Discovery
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• Problem: 
• Unique characterisOcs of paOents in different domains

• Idea:
• Train customized classifiers for each domain

Insight 2: Domain-Specific Model customization

Classifier

Classifier

Classifier

+ Predic/on

Classifier

Age

Symptom

Treatments

Medical History



Z. Wu, H. Yao, D. Liebovitz, J. Sun. An Iterative Self-Learning Framework for Medical Domain Generalization. NeurIPS’23.

8

Method: A Self-Learning Framework for Domain Generalization
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SLDG Is Robust Against Spatial and Temporal Domain Shifts
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• Goal
• Develop a clinical predictive model on the source data that effectively handles potential domain shifts 

when applied to the target data
• Challenges

• Unknown domain IDs
• Distinct characteristics across domains

• Method
• SLDG: a self-learning framework for domain generalization
• Iteratively discovers decoupled domains and trains customized classifiers for each discovered domain

• Result
• Achieves up to 11% improvement in the AUPRC score over the best baseline
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