



# How Re-sampling Helps for Long-Tail Learning?

Jiang-Xin Shi<sup>1\*</sup> Tong Wei<sup>2\*</sup> Yuke Xiang<sup>3</sup> Yu-Feng Li<sup>1†</sup>

<sup>1</sup> National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China <sup>2</sup> School of Computer Science and Engineering, Southeast University, Nanjing, China <sup>3</sup> Consumer BG, Huawei Technologies, Shenzhen, China

The 37th Conference on Neural Information Processing Systems (NeurIPS 2023)

## Outline



Background

**D** Motivation

□ Method

**Conclusion** 



# Background



• DNNs have achieved great success by applying well-designed models on large-scale elaborated datasets





• However, real-world data often exhibits a long-tail class distribution

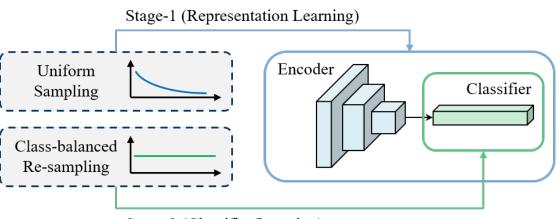




# **Two-stage Learning**



- Stage-1:
  - a) Adopt uniform sampling
  - b) Jointly train the feature encoder & the classifier
- Stage-2:
  - a) Adopt class-balanced re-sampling
  - b) Fix the feature encoder
  - c) Re-train the classifier



Stage-2 (Classifier Learning)

• Representative methods: cRT, DRS, BBN, .....





### □ Background

**D** Motivation — *Can re-sampling benefit long-tail learning in the single-stage framework?* 

#### □ Method





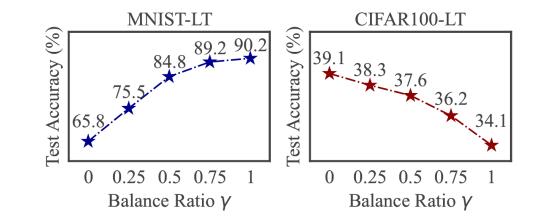
## Motivation



Can re-sampling benefit long-tail learning in the single-stage framework?

#### • Re-sampling leads to opposite effects on long-tail datasets

- On MNIST-LT dataset, Re-sampling **helps** long-tail learning (More balanced, more helps).
- On CIFAR100-LT dataset, Re-sampling **harms** long-tail learning (More balanced, more harms).





# **Success/Failure of Re-sampling**



• Comparing CE, cRT, CB-RS on four long-tail datasets

Table 1: Test accuracy (%) of CE with uniform sampling, classifier re-training (cRT), and classbalanced re-sampling (CB-RS) on four long-tail benchmarks. We report the accuracy in terms of all, many-shot, medium-shot, and few-shot classes.

|       | MNIST-LT |      |      |      | Fashion-LT |      |      |      | CIFAR100-LT |      |      | 0   |      |      |      |      |
|-------|----------|------|------|------|------------|------|------|------|-------------|------|------|-----|------|------|------|------|
|       | All      | Many | Med. | Few  | All        | Many | Med. | Few  | All         | Many | Med. | Few | All  | Many | Med. | Few  |
| CE    | 65.8     | 99.1 | 89.9 | 0.0  | 45.6       | 94.7 | 43.1 | 0.0  | 39.1        | 65.8 | 36.8 | 8.8 | 35.0 | 57.7 | 26.5 | 4.7  |
| cRT   |          |      |      |      |            |      |      |      |             |      |      |     |      |      |      |      |
| CB-RS | 90.8     | 98.7 | 94.4 | 77.7 | 80.5       | 86.6 | 74.3 | 82.8 | 34.1        | 59.5 | 31.1 | 6.2 | 37.6 | 47.5 | 36.5 | 16.7 |

- cRT performs best on CIFAR100-LT and ImageNet-LT, indicating that CB-RS can help for classifier learning, while harms representation learning.
- CE-RS outperforms cRT on MNIST-LT and Fashion-LT, indicating that CB-RS learns better representations than uniform sampling on these two datasets.



# Hypothesize



#### • We hypothesize that **re-sampling is sensitive to the contexts in the samples**

Table 1: Test accuracy (%) of CE with uniform sampling, classifier re-training (cRT), and classbalanced re-sampling (CB-RS) on four long-tail benchmarks. We report the accuracy in terms of all, many-shot, medium-shot, and few-shot classes.

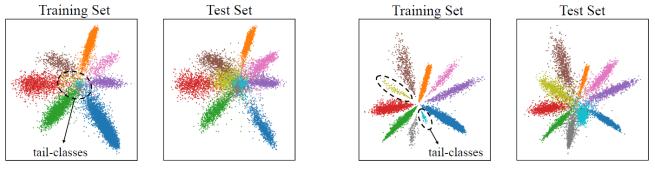
|       |                                | MNIS        | ST-LT |      |      | Fashi             | on-LT                  |      |      | CIFAR                       | 100-L7 | Γ    |      | Imagel               | Net-LT    |      |
|-------|--------------------------------|-------------|-------|------|------|-------------------|------------------------|------|------|-----------------------------|--------|------|------|----------------------|-----------|------|
|       | All                            | Many        | Med.  | Few  | All  | Many              | Med.                   | Few  | All  | Many                        | Med.   | Few  | All  | Many                 | Med.      | Few  |
| CE    | 65.8                           | <b>99.1</b> | 89.9  | 0.0  | 45.6 | 94.7              | 43.1                   | 0.0  | 39.1 | 65.8                        | 36.8   | 8.8  | 35.0 | 57.7                 | 26.5      | 4.7  |
| cRT   | 82.5                           | 96.6        |       |      |      | 77.1              | 61.4                   |      |      |                             | 40.4   | 16.5 | 41.9 | 52.9                 | 39.2      | 23.6 |
| CB-RS | 90.8                           | 98.7        | 94.4  | 77.7 | 80.5 | 86.6              | 74.3                   | 82.8 | 34.1 | 59.5                        | 31.1   | 6.2  | 37.6 | 47.5                 | 36.5      | 16.7 |
|       |                                |             |       |      |      |                   |                        |      |      |                             |        |      |      |                      |           |      |
|       |                                | 4           | 0     |      |      | Peter (J)         | Nor(3) B) (0)          | ď    |      |                             | 0      |      |      | R0291944 (194) R0230 | 2714 (MD) |      |
|       |                                | 7 8         | 31    |      |      |                   | 1                      |      |      |                             | R      |      |      | 64254777 BIRE        | 944) GARE |      |
|       |                                | 5 :         | 7 /   |      |      |                   |                        | ۱.   |      |                             |        |      |      | AND LONG LONG        |           | •    |
|       | (                              | 212         | 101   |      |      | Pullever (2) Pull | looer (2) Toherkop (1) | )    | (    |                             |        |      |      | -034                 | 49537 (1) | )    |
|       | Highly semantically correlated |             |       |      |      |                   |                        |      |      | Contain irrelevant contexts |        |      |      |                      |           |      |



# A Closer Look at Re-sampling



• Re-sampling can learn discriminative representations



(a) Uniform sampling.

(b) Class-balanced re-sampling.

Figure 2: Visualization of learned representation of training and test set on MNIST-LT. Using classbalanced re-sampling yields more discriminative and balanced representations.

- With uniform sampling on MNIST-LT, the representation space is dominated by head classes
- By applying class-balanced re-sampling (CB-RS), both head and tail classes are discriminative.

# A Closer Look at Re-sampling



• Re-sampling is sensitive to irrelevant contexts

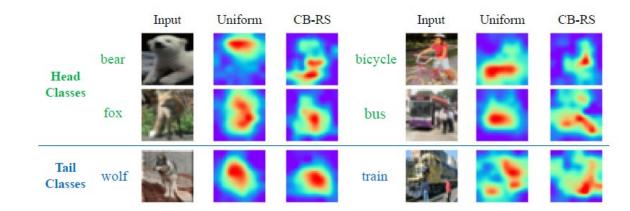


Figure 3: Visualization of features with Grad-CAM [17] on CIFAR100-LT. Uniform sampling mainly learns label-relevant features, while re-sampling overfits the label-irrelevant features.

• On CIFAR100-LT, class-balanced re-sampling (CB-RS) leads to overfitting on the irrelevant contexts from tail classes, and unexpectedly affects the representation of head classes.



# **Proposed benchmark**



• We design Colored-MNIST-LT (CMNIST-LT) by injecting colors into MNIST-LT to artificially construct irrelevant contexts, and compare cRT and CB-RS on these two datasets.

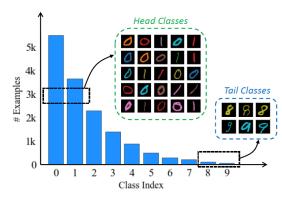


Figure 7: Illustration of the CMNIST-LT benchmark.

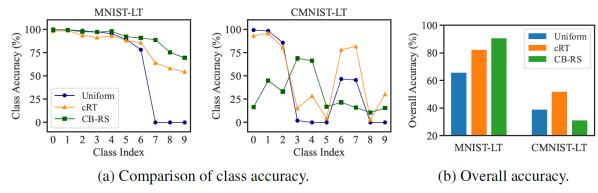


Figure 4: Comparison of Uniform sampling, cRT, and CB-RS on MNIST-LT and CMNIST-LT.

• The results show that CB-RS succeeds on MNIST-LT and fails on CMNIST-LT, thus validating the negative impact of irrelevant contexts on re-sampling.



## Outline



□ Background

### **D** Motivation

□ Method — *How to avoid the irrelevant contexts?* 

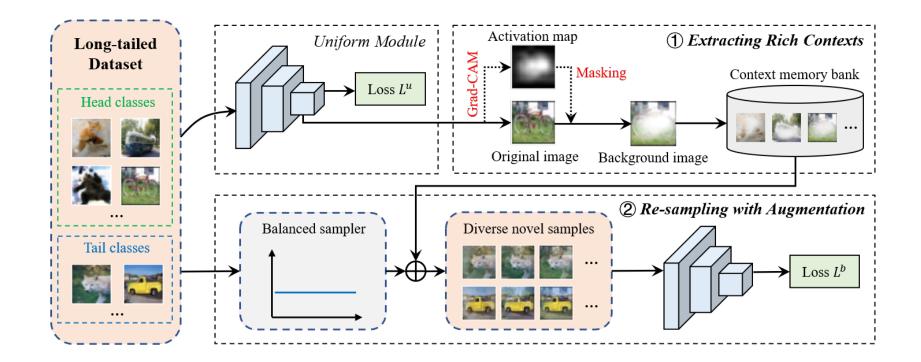




## Method



- Context-Shift Augmentation (CSA)
  - —— a simple approach to make re-sampling robust to context-shift





# **Experiments**



• Results on long-tail datasets

| Dataset            | CI   | FAR100- | LT   | C    | IFAR10-I | Т           |
|--------------------|------|---------|------|------|----------|-------------|
| Imbalance Ratio    | 100  | 50      | 10   | 100  | 50       | 10          |
| CE                 | 38.3 | 43.9    | 55.7 | 70.4 | 74.8     | 86.4        |
| Focal Loss [31]    | 38.4 | 44.3    | 55.8 | 70.4 | 76.7     | 86.7        |
| CB-Focal [7]       | 39.6 | 45.2    | 58.0 | 74.6 | 79.3     | 87.1        |
| CE-DRS [15]        | 41.6 | 45.5    | 58.1 | 75.6 | 79.8     | 87.4        |
| CE-DRW [15]        | 41.5 | 45.3    | 58.1 | 76.3 | 80.0     | 87.6        |
| LDAM-DRW [15]      | 42.0 | 46.6    | 58.7 | 77.0 | 81.0     | 88.2        |
| cRT [6]            | 42.3 | 46.8    | 58.1 | 75.7 | 80.4     | 88.3        |
| LWS [6]            | 42.3 | 46.4    | 58.1 | 73.0 | 78.5     | 87.7        |
| BBN [14]           | 42.6 | 47.0    | 59.1 | 79.8 | 82.2     | 88.3        |
| mixup [29]         | 39.5 | 45.0    | 58.0 | 73.1 | 77.8     | 87.1        |
| Remix [33]         | 41.9 | -       | 59.4 | 75.4 | -        | 88.2        |
| M2m [32]           | 43.5 | -       | 57.6 | 79.1 | -        | 87.5        |
| CAM-BS [13]        | 41.7 | 46.0    | -    | 75.4 | 81.4     | -           |
| CMO [27]           | 43.9 | 48.3    | 59.5 | -    | -        | -           |
| cRT+mixup [34]     | 45.1 | 50.9    | 62.1 | 79.1 | 84.2     | 89.8        |
| LWS+mixup [34]     | 44.2 | 50.7    | 62.3 | 76.3 | 82.6     | 89.6        |
| CSA (ours)         | 45.8 | 49.6    | 61.3 | 80.6 | 84.3     | 89.8        |
| CSA + mixup (ours) | 46.6 | 51.9    | 62.6 | 82.5 | 86.0     | <b>90.8</b> |

Table 2: Test accuracy (%) on CIFAR datasets with various imbalanced ratios.

Table 3: Test accuracy (%) on ImageNet-LT dataset.

|                         | ResNet-10 |             | ResN | et-50 |      |
|-------------------------|-----------|-------------|------|-------|------|
|                         | (All)     | All         | Many | Med.  | Few  |
| CE                      | 34.8      | 41.6        | 64.0 | 33.8  | 5.8  |
| Focal Loss [31]         | 30.5      | -           | -    | -     | -    |
| OLTR [5]                | 35.6      | -           | -    | -     | -    |
| FSA [28]                | 35.2      | -           | -    | -     | -    |
| cRT [6]                 | 41.8      | 47.3        | 58.8 | 44.0  | 26.1 |
| LWS [6]                 | 41.4      | 47.7        | 57.1 | 45.2  | 29.3 |
| BBN [14]                | -         | 48.3        | -    | -     | -    |
| CMO [27] <sup>†</sup>   | -         | 49.1        | 67.0 | 42.3  | 20.5 |
| CSA (ours)              | 42.7      | 49.1        | 62.5 | 46.6  | 24.1 |
| CSA <sup>†</sup> (ours) | 43.2      | <b>49.7</b> | 63.6 | 47.0  | 23.8 |

<sup>†</sup> denotes a longer training of 100 epochs.

 ✓ CSA outperforms re-sampling/re-weighting, head-to-tail knowledge transfer, and data augmentation methods



## **Experiments**



#### ✓ CSA remedies class-balanced re-sampling

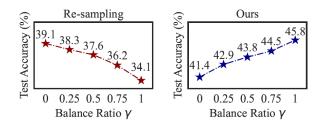


Figure 9: Comparison of re-sampling and our method under different balance ratios  $\gamma$ .

#### ✓ CSA yields better representations

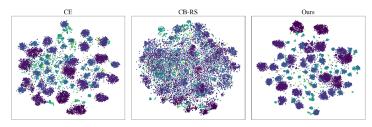


Figure 10: Visualization of learned representation on CIFAR100-LT.

#### $\checkmark$ CSA can be integrated with SOTA

Table 11: Accuracy (%) on CIFAR100-LT by integrating the proposed CSA into BCL

| Imbalance Ratio | 100  | 50   | 10   |
|-----------------|------|------|------|
| BCL             | 51.9 | 56.6 | 64.9 |
| BCL w/ CSA      | 52.6 | 57.1 | 65.8 |

#### $\checkmark$ CSA does not lead to much overhead

Table 12: Training time cost per epoch on CIFAR100-LT.

|                              | w/ CE            | w/ BCL           |
|------------------------------|------------------|------------------|
| Single-Branch<br>Dual-Branch | 2.04 s<br>2.38 s | 4.76 s<br>4.85 s |
| Ours                         | 2.98 s           | 5.10 s           |



## Outline



□ Background

**D** Motivation

□ Method

**Conclusion** 



# Conclusion



- This paper investigates the reasons behind the success/failure of re-sampling approaches in long-tail learning
- This paper proposes a new context-shift augmentation module.







