On the Statistical Consistency of Risk-Sensitive Bayesian Decision-Making

Prateek Jaiswal*, Harsha Honnappa[†], Vinayak A. Rao[‡]

* Department of Statistics, Texas A&M University
[†]School of Industrial Engineering, Purdue University
*Department of Statistics, Purdue University

37th Conference on Neural Information Processing Systems (NeurIPS 2023)

Poster Session(Poster #1222) Where: Great Hall & Hall B1+B2 When: Wed 13 Dec, 10:45 a.m. CST - 12:45 p.m. CST

- In many applications, we must make decisions over model inference (Inventory management, Resource allocation etc.)
- (Recall) Bayes Risk

 $\mathsf{minimize}_{a\in\mathcal{A}} \quad \mathbb{E}_{\pi(heta| ilde{X}_n)}[R(a, heta)]$

- $\mathcal{A} \subseteq \mathbb{R}^{d}$: Decision space
- $\pi(\theta|\tilde{X}_n)$: Posterior distribution over $\theta \in \Theta$
- $R(a, \theta)$: Risk function

• We replace the expectation in the Bayes risk to a log-exponential or entropic risk measure.

$$\operatorname{minimize}_{a \in \mathcal{A}} \overbrace{\varrho_{\pi_n}^{\gamma}(R(a,\theta))}^{\operatorname{Entropic Risk}} := \frac{1}{\gamma} \log \mathbb{E}_{\pi_n}[\exp(\gamma \overbrace{R(a,\theta)}^{\operatorname{Loss/Risk}}))]$$

where $\gamma > 0$ is the risk-sensitivity parameter and $\pi_n \equiv \pi(\theta | \tilde{X}_n)$.

- In many applications, we must make decisions over model inference (Inventory management, Resource allocation etc.)
- (Recall) Bayes Risk

$$\mathsf{minimize}_{a \in \mathcal{A}} \quad \mathbb{E}_{\pi(\theta | \tilde{X}_n)}[R(a, \theta)]$$

- $\mathcal{A} \subseteq \mathbb{R}^d$: Decision space
- $\pi(\theta|\tilde{X}_n)$: Posterior distribution over $\theta \in \Theta$
- $R(a, \theta)$: Risk function

We replace the expectation in the Bayes risk to a log-exponential or entropic risk measure.

$$\operatorname{minimize}_{a \in \mathcal{A}} \overbrace{\varrho_{\pi_n}^{\gamma}(R(a,\theta))}^{\operatorname{Entropic Risk}} := \frac{1}{\gamma} \log \mathbb{E}_{\pi_n}[\exp(\gamma \overbrace{R(a,\theta)}^{\operatorname{Loss/Risk}}))]$$

where $\gamma > 0$ is the risk-sensitivity parameter and $\pi_n \equiv \pi(\theta | \tilde{X}_n)$.

- In many applications, we must make decisions over model inference (Inventory management, Resource allocation etc.)
- (Recall) Bayes Risk

$$\mathsf{minimize}_{a \in \mathcal{A}} \quad \mathbb{E}_{\pi(\theta | \tilde{X}_n)}[R(a, \theta)]$$

- $\mathcal{A} \subseteq \mathbb{R}^d$: Decision space
- $\pi(\theta|\tilde{X}_n)$: Posterior distribution over $\theta \in \Theta$
- $R(a, \theta)$: Risk function
- We replace the expectation in the Bayes risk to a log-exponential or entropic risk measure.

$$\operatorname{\mathsf{minimize}}_{a \in \mathcal{A}} \underbrace{\varrho_{\pi_n}^{\mathbb{E}\operatorname{\mathsf{htropic Risk}}}}_{\varrho_{\pi_n}(R(a,\theta))} := \frac{1}{\gamma} \log \mathbb{E}_{\pi_n}[\exp(\gamma \underbrace{R(a,\theta)}^{\operatorname{\mathsf{Loss/Risk}}})]$$
(1)

where $\gamma > 0$ is the risk-sensitivity parameter and $\pi_n \equiv \pi(\theta | \tilde{X}_n)$.

- Entropic risk measure captures higher moments, and thus tail effects.
- $\bullet~\gamma$ encodes the risk sensitivity of the decision maker.

Risk Neutral	Completely Risk Averse
$\overline{\lim_{\gamma \to 0^+} \varrho_{\pi_n}^{\gamma}(R(a,\theta))} = \mathbb{E}_{\pi_n}[R(a,\theta)]$	$ \lim_{\gamma \to \infty} \varrho^{\gamma}_{\pi_n}(R(a,\theta)) = \mathrm{ess-sup}_{\pi_n}R(a,\theta) $

Recall that the posterior distribution is intractable in general

- Entropic risk measure captures higher moments, and thus tail effects.
- $\bullet~\gamma$ encodes the risk sensitivity of the decision maker.

Risk Neutral	Completely Risk Averse
$\overline{\lim_{\gamma \to 0^+} \varrho_{\pi_n}^{\gamma}(R(a,\theta))} = \mathbb{E}_{\pi_n}[R(a,\theta)]$	$ \lim_{\gamma \to \infty} \varrho^{\gamma}_{\pi_n}(R(a,\theta)) = \mathrm{ess-sup}_{\pi_n}R(a,\theta) $

Recall that the posterior distribution is intractable in general

Risk-Sensitive Variational Bayes (RSVB)

For any $\gamma > 0$ and $a \in \mathcal{A}$ [Using Donsker-Varadhan variational lemma]

$$\frac{1}{\gamma} \log \mathbb{E}_{\pi_n} \left[\exp(\gamma R(a, \theta)) \right] = \max_{q \in \mathcal{M}} \underbrace{\left[\mathbb{E}_q [R(a, \theta)] - \frac{1}{\gamma} \mathrm{KL}(q || \pi_n) \right]}_{=:\mathcal{F}(a; q, \tilde{X}_n, \gamma)}$$
$$\Rightarrow \frac{1}{\gamma} \log \mathbb{E}_{\pi_n} \left[\exp(\gamma R(a, \theta)) \right] \ge \max_{q \in \mathcal{Q}} \mathcal{F}(a; q, \tilde{X}_n, \gamma)$$

RSVB decision rule

$$\mathbf{a}_{\mathrm{RS}}^* \equiv \mathbf{a}_{\mathrm{RS}}^*(\gamma, \tilde{X}_n) := \mathrm{argmin}_{a \in \mathcal{A}} \max_{q \in \mathcal{Q}} \mathcal{F}(a; q, \tilde{X}_n, \gamma)$$

RSVB posterior (for any $a' \in \mathcal{A}$)

$$q_{a',\gamma}^*(\theta|\tilde{X}_n) \in \operatorname{argmax}_{q \in \mathcal{Q}} \mathcal{F}(a';q,\tilde{X}_n,\gamma),$$

() For $\gamma = 1$, it recovers **Loss-calibrated VB (LCVB)**

 $\min_{a \in \mathcal{A}} \max_{q \in \mathcal{Q}} \left[\mathbb{E}_q[R(a, \theta)] - \mathrm{KL}(q || \pi_n) \right]$

¹Lacoste–Julien et. al., Approximate inference for the loss-calibrated Bayesian. AISTAT(2011)

Risk-Sensitive Variational Bayes (RSVB)

For any $\gamma > 0$ and $a \in \mathcal{A}$ [Using Donsker-Varadhan variational lemma]

$$\frac{1}{\gamma} \log \mathbb{E}_{\pi_n} \left[\exp(\gamma R(a, \theta)) \right] = \max_{q \in \mathcal{M}} \underbrace{\left[\mathbb{E}_q[R(a, \theta)] - \frac{1}{\gamma} \mathrm{KL}(q || \pi_n) \right]}_{=:\mathcal{F}(a; q, \tilde{X}_n, \gamma)}$$
$$\Rightarrow \frac{1}{\gamma} \log \mathbb{E}_{\pi_n} \left[\exp(\gamma R(a, \theta)) \right] \ge \max_{q \in \mathcal{Q}} \mathcal{F}(a; q, \tilde{X}_n, \gamma)$$

RSVB decision rule

$$\mathbf{a}_{\mathrm{RS}}^* \equiv \mathbf{a}_{\mathrm{RS}}^*(\gamma, \tilde{X}_n) := \mathrm{argmin}_{a \in \mathcal{A}} \max_{q \in \mathcal{Q}} \mathcal{F}(a; q, \tilde{X}_n, \gamma)$$

RSVB posterior (for any $a' \in \mathcal{A}$)

$$q_{a',\gamma}^*(\theta|\tilde{X}_n) \in \operatorname{argmax}_{q \in \mathcal{Q}} \mathcal{F}(a';q,\tilde{X}_n,\gamma),$$

() For $\gamma = 1$, it recovers Loss-calibrated VB (LCVB)¹

$$\min_{a \in \mathcal{A}} \max_{q \in \mathcal{Q}} \left[\mathbb{E}_q[R(a, \theta)] - \mathrm{KL}(q || \pi_n) \right]$$

¹Lacoste-Julien et. al., Approximate inference for the loss-calibrated Bayesian. AISTAT(2011)

Our Contributions

Statistical Guarantees: Under verifiable regularity conditions on the prior, likelihood model, and the risk function

- **0** RSVB posterior converges to δ_{θ_0} at the same convergence rate (wrt sample size n) as the true posterior,
- **2** Quantify the rate of convergence of the RSVB decision rule (when A is compact.)
- Our theoretical results also imply the asymptotic properties of the LCVB posterior and the associated decision rule.

Empirical Results

Performance Measures

- Variance of $\theta \sim q_{a,\gamma}^*(\theta | \tilde{X}_n)$, at $a = \mathbf{a}_{RS}^*$.
- Optimality Gap (OG) in values: $R(a_{RS}^*, \theta_0) R(a^*, \theta_0)$, where $a^* = \operatorname{argmin}_{a \in \mathcal{A}} R(a, \theta_0)$.

Our Contributions

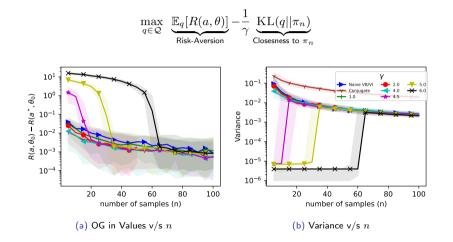
Statistical Guarantees: Under verifiable regularity conditions on the prior, likelihood model, and the risk function

- **O** RSVB posterior converges to δ_{θ_0} at the same convergence rate (wrt sample size n) as the true posterior,
- **2** Quantify the rate of convergence of the RSVB decision rule (when A is compact.)
- Our theoretical results also imply the asymptotic properties of the LCVB posterior and the associated decision rule.

Empirical Results

Performance Measures

- Variance of $\theta \sim q_{a,\gamma}^*(\theta | \tilde{X}_n)$, at $a = \mathbf{a}_{RS}^*$.
- Optimality Gap (OG) in values: $R(a_{RS}^*, \theta_0) R(a^*, \theta_0)$, where $a^* = \operatorname{argmin}_{a \in \mathcal{A}} R(a, \theta_0)$.



Questions?

Poster Session(Poster #1222)

Where: Great Hall & Hall B1+B2 When: Wed 13 Dec, 10:45 a.m. CST - 12:45 p.m. CST

Paper link