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Bayesian Risk-Sensitive Decision-making Framework
From Risk-Neutral to Risk-Sensitive Bayes Risk

In many applications, we must make decisions over model inference (Inventory management, Resource
allocation etc.)

(Recall) Bayes Risk

minimizea∈A Eπ(θ|X̃n)[R(a, θ)]

• A ⊆ Rd: Decision space
• π(θ|X̃n): Posterior distribution over θ ∈ Θ
• R(a, θ): Risk function

We replace the expectation in the Bayes risk to a log-exponential or entropic risk measure.

minimizea∈A

Entropic Risk︷ ︸︸ ︷
ϱγπn

(R(a, θ)) :=
1

γ
logEπn [exp(γ

Loss/Risk︷ ︸︸ ︷
R(a, θ))] (1)

where γ > 0 is the risk-sensitivity parameter and πn ≡ π(θ|X̃n).
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Bayesian Risk-Sensitive Decision-making Framework
From Risk-Neutral to Risk-Sensitive Bayes Risk

Entropic risk measure captures higher moments, and thus tail effects.

γ encodes the risk sensitivity of the decision maker.

Risk Neutral︷ ︸︸ ︷
lim

γ→0+
ϱγπn

(R(a, θ)) = Eπn [R(a, θ)]

Completely Risk Averse︷ ︸︸ ︷
lim

γ→∞
ϱγπn

(R(a, θ)) = ess-supπn
R(a, θ)

Recall that the posterior distribution is intractable in general
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Risk-Sensitive Variational Bayes (RSVB)

For any γ > 0 and a ∈ A [ Using Donsker-Varadhan variational lemma]

1

γ
logEπn [exp(γR(a, θ))] = max

q∈M

[
Eq[R(a, θ)]− 1

γ
KL(q||πn)

]
︸ ︷︷ ︸

=:F(a;q,X̃n,γ)

,

⇒ 1

γ
logEπn [exp(γR(a, θ))] ≥ max

q∈Q
F(a; q, X̃n, γ)

RSVB decision rule
a
∗
RS ≡ a

∗
RS(γ, X̃n) := argmina∈A max

q∈Q
F(a; q, X̃n, γ)

RSVB posterior (for any a′ ∈ A )

q∗a′,γ(θ|X̃n) ∈ argmaxq∈QF(a′; q, X̃n, γ),

1 For γ = 1, it recovers Loss-calibrated VB (LCVB)1

min
a∈A

max
q∈Q

[Eq[R(a, θ)]−KL(q||πn)]

1Lacoste–Julien et. al., Approximate inference for the loss-calibrated Bayesian. AISTAT( 2011)
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Our Contributions

Statistical Guarantees: Under verifiable regularity conditions on the prior, likelihood model, and the risk
function

1 RSVB posterior converges to δθ0 at the same convergence rate (wrt sample size n) as the true posterior,

2 Quantify the rate of convergence of the RSVB decision rule ( when A is compact.)

3 Our theoretical results also imply the asymptotic properties of the LCVB posterior and the associated
decision rule.

Empirical Results

Performance Measures

1 Variance of θ ∼ q∗a,γ(θ|X̃n), at a = a∗RS.

2 Optimality Gap (OG) in values: R(a∗RS, θ0)−R(a∗, θ0), where a∗ = argmina∈AR(a, θ0).
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Our Contributions
Demonstrating the effect of γ and n

max
q∈Q

Eq[R(a, θ)]︸ ︷︷ ︸
Risk-Aversion

− 1

γ
KL(q||πn)︸ ︷︷ ︸
Closesness to πn
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Questions?
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