

Overcoming Recency Bias of Normalization Statistics in Continual Learning: Balance and Adaptation

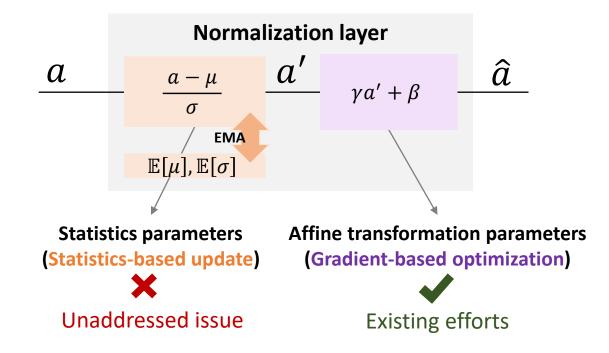
Yilin Lyu^{1*}, Liyuan Wang^{2*}, Xingxing Zhang²⁺, Zicheng Sun¹, Hang Su², Jun Zhu², Liping Jing¹⁺

¹ Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University ² Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Center, THBI Lab, Tsinghua-Bosch Joint Center for ML, Tsinghua University

*Equal contribution [†]Corresponding authors

Background & Motivation

• Key challenge in CL: Catastrophic forgetting (recency bias)

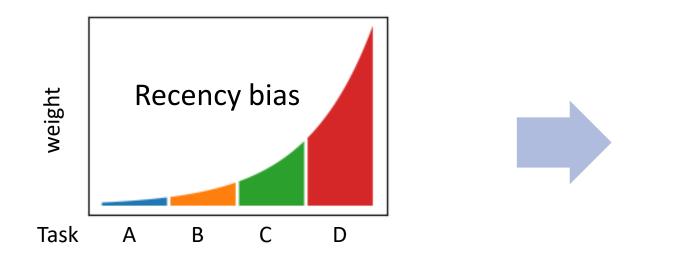


Background & Motivation

• The update rule of BN's statistics parameters: exponential moving average (EMA)

$$\hat{\mathbb{E}}[S_m] := \hat{\mathbb{E}}[S|a_1, \cdots, a_m] = (1 - \eta)\hat{\mathbb{E}}[S|a_1, \cdots, a_{m-1}] + \eta S_m$$

where $\eta \in (0, 1)$ and $S(\cdot) = [\mu(\cdot), \sigma^2(\cdot, \mu(\cdot))]^\top$



- To what degree?
- How does replay help?
- How to balance?

Imbalanced task-wise contributions to statistics

Analysis

• Thm. 1: Statistical weight for EMA

$$w_t = \left[\sum_{i=m_{t-1}+1}^{m_t} \eta_i r_i \prod_{j=i+1}^{m_T} (1-\eta_j) + \sum_{i=m_t+1}^{m_T} \frac{\eta_i (1-r_i)}{T-1} \prod_{j=i+1}^{m_T} (1-\eta_j)\right] / Z$$

This exposes a dilemma between *balance* and *adaptation*.

• Cor. 3: Balance of BN statistics

An improved strategy is needed to reconcile *balance* and *adaptation*.

• Cor. 2: Adaptation of BN statistics

$$w_t = \frac{\bar{\eta}^{m_T - t} - \bar{\eta}^{m_T - t + 1}}{1 - \bar{\eta}^{m_T}} / Z$$

Without the use of replay, the statistical weights of past tasks decrease exponentially.

• Cor. 4: Statistical weight for CMA

An improved strategy needs to take into account the parameters of the current model

• Thm. 5: BN may fail to stabilize and improve generalization in continual learning

$$\|\nabla_{a_{[:,j]}}\mathcal{L}\|^{2} \leq \frac{\gamma^{2}}{\sigma_{[:,j]}^{2}C} \left[C \|\nabla_{a_{[:,j]}}\mathcal{L}'\|^{2} - (\mathbf{1}^{\top}\nabla_{a_{[:,j]}}\mathcal{L}')^{2} - (\nabla_{a_{[:,j]}}^{\top}\mathcal{L}' \cdot a_{[:,j]}')^{2} \right]$$

The upper bound of the gradient magnitude will be loosened by the increase of gradient similarity, which potentially affects the benefit of BN.

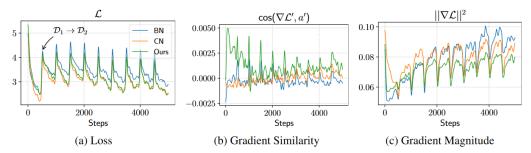


Figure 1: Dynamics of the loss of training batches, gradient similarity (i.e., cosine similarity between gradients and normalized representations) and gradient magnitude.

Solution (AdaB²N)

- Training aspect
 - A Bayesian-based strategy:

$$a'_m = \frac{a_m - \mathbb{E}[\mu|a_m]}{\sqrt{\mathbb{E}[\sigma^2|a_m] + \varepsilon}}$$

$$\hat{\mathbb{E}}[S|a_m] = \sum_{\tau} \sum_{t} \mathcal{P}_{\phi}(\tau|a_m) \mathcal{P}_{\theta}(t|\tau, a_m) S_m^t = \sum_{t} \frac{\phi_t + N_t}{\bar{\phi} + N} S_m^t$$

where ϕ is learnable

• Objective function

$$\min_{\theta,\psi} \mathcal{L}_{CL}(\theta) + \lambda \sum_{\ell} \mathcal{L}_{ada}^{(\ell)}(\theta,\psi)$$
$$\mathcal{L}_{ada}^{(\ell)}(\theta,\psi) = \|\hat{\mathbb{E}}[S|a_m] - \hat{\mathbb{E}}[S_m]\|^2$$

- Testing aspect
 - Striking an balance between EMA and CMA

$$\eta_i := \eta(i, \eta_{i-1}) = \frac{\eta_{i-1}}{\eta_{i-1} + (1 - \tilde{\eta})^{\kappa}}, \quad \eta_0 := \tilde{\eta}^{\kappa}$$

- Performance
 - Achieves statistically significant improvements in both **online** and **offline** scenarios (p < 0.05)

Table 1: Performance of **online task-incremental learning** with batch size |B| = 10. We report final average accuracy of all seen tasks (\uparrow) with \pm standard deviation.

Method	Split CIFAR-10		Split CIFAR-100		Split Mini-ImageNet	
Method	M = 500	$ \mathcal{M} = 2000$	$ \mathcal{M} = 2000$	$ \mathcal{M} = 5000$	$ \mathcal{M} = 2000$	$ \mathcal{M} = 5000$
ER-ACE w/ BN	86.34±2.35	89.17±1.21	61.21±1.63	63.83±1.94	63.62±3.14	64.60±1.73
ER-ACE w/ LN	78.01±6.78	81.59±4.39	42.29±0.29	44.32±0.35	45.91±1.63	45.82±1.91
ER-ACE w/ IN	84.57±1.42	86.03±1.99	49.46±2.25	50.15±1.71	41.07±1.66	40.93±4.38
ER-ACE w/ GN	81.46±3.74	82.85±2.14	44.84 ± 1.41	42.50±2.06	43.45±3.29	45.43±0.62
ER-ACE w/ CN	88.32±1.43	90.01±0.95	61.00 ± 1.58	63.42±0.65	64.23±1.22	65.14±1.48
ER-ACE w/ Ours	88.74±1.77	90.84±2.01	63.88±1.58	67.01±2.90	66.78±1.91	68.03±0.41
DER++ w/ BN	87.61±1.67	90.42±1.83	65.53±1.17	66.23±0.94	61.70±2.40	61.28±1.29
DER++ w/ LN	81.35±4.25	82.80 ± 5.48	43.24±0.86	44.42±2.90	40.05±3.67	37.64±4.26
DER++ w/ IN	84.81±2.99	87.04±2.60	47.39±1.46	49.17±2.13	32.88±1.16	35.23±6.11
DER++ w/ GN	82.05±1.24	83.34±3.34	43.54±1.47	45.12±1.15	40.65±1.76	38.26±3.26
DER++ w/ CN	86.92±0.89	89.75±0.76	66.20±0.38	67.39±1.88	65.09±1.76	66.14±1.40
DER++ w/ Ours	90.15±2.52	91.99±0.81	70.33±0.49	71.70±0.84	66.42±3.62	69.12±2.51

Table 4: Performance of offline task-incremental learning and class-incremental learning on Spl	it
Mini-ImageNet with memory size $ \mathcal{M} = 2000$.	

Method		Task-IL			Class-IL	
	ER-ACE	DER++	LiDER	ER-ACE	DER++	LiDER
BN	36.36±2.33	35.91±1.59	36.96±1.92	10.85±0.54	12.69±1.23	10.99±0.74
CN	35.83±1.43	35.46±1.42	36.23±2.62	10.00 ± 0.62	12.13±0.92	9.97±0.36
Ours	37.64±0.85	36.98±1.52	37.36±0.79	11.05 ± 0.10	13.07±1.30	10.96±0.67

Thank you!

Paper link: https://arxiv.org/abs/2310.08855

Code link: https://github.com/lvyilin/AdaB2N

