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Background & Prior Work

Truncated Densities
Let ρS := ρ(· | · ∈ S) be the conditional distribution of x ∼ ρ

given that x ∈ S . That is, ρS(x) = ρ(x)·1{x∈S}
ρ(S) .

Prior Work
• A recent line of work provides the first efficient estimation
algorithms for the parameters of a Gaussian distribution,
linear regression with Gaussian noise, LDS, etc.

• These works rely on properties of Gaussian distributions.
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Problem Statement

We are given truncated samples {xi}ni=1, each xi ∼ pSθ∗ , where
pθ∗(S) = α > 0. Only accessing the truncation set S via a
membership oracle, can one recover θ∗ and thus pθ∗

(computationally) efficiently?

Our Result
We can recover θ∗ efficiently from truncated samples from a
high-dimensional exponential family distribution (under some
assumptions).
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Main Ingredients

In order to have an efficient procedure for which extrapolation
is possible, we need to address these statistical and algorithmic
challenges.

• We need to ensure the steps of a projected SGD (PSGD)
procedure are efficient, and terminates in time polynomial
in (m, k, 1/ϵ) (where x ∈ Rm, θ ∈ Rk , ϵ is accuracy
parameter).

• Strong convexity and smoothness of the truncated
negative log-likelihood objective (in θ) depend on pθ(S).

• Given that pθ∗(S) = α, we can lower bound pθ(S) in
terms of ∥θ − θ∗∥.

• We can design a procedure to find an initial parameter θ0
so that ∥θ0 − θ∗∥ is small and project to a neighborhood
around θ0.
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Implications

The current work has a few important implications:

• Our assumptions are met by exponential, Weibull,
continuous Bernoulli, continuous Poisson, Gaussian
distributions, and certain generalized linear models.

• Combined with ideas of a statistical Taylor theorem (prior
work), we can learn log-concave distributions
ρ(x) = exp(−f (x)) by replacing f (x) ≈

∑
i ai ti (x) by

finite Taylor approximation.

• Given initial truncated examples, we can generate data
from the non-truncated distribution (with small error).
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