### An Optimal and Scalable Matrix Mechanism for Noisy Marginals under Convex Loss Functions

Yingtai Xiao, <u>yxx5224@psu.edu</u> Guanlin He, <u>gbh5146@psu.edu</u> Danfeng Zhang, <u>dbz5017@psu.edu</u> Daniel Kifer, <u>duk17@psu.edu</u>





# **Differentially Private Marginals**

- Marginals are tables of counts on a set of attributes
  - e.g., how many people there are for each combination of race and gender.
  - The most common formats for
    - dissemination of statistical data
    - correlations between attributes
    - sufficient statistics for Bayesian networks and Markov random fields
- Matrix Mechanism answers linear queries under differential privacy
  - Enables valid confidence intervals and hypothesis tests
  - Noisy marginals can be used to generate differentially private synthetic data





# **Previous SOTA: HDMM**

- Select
  - Select a Gaussian linear mechanism  $M(x) = Bx + N(0, \Sigma)$
  - B is a linear combination of marginals
- Measure
  - Get the noisy output  $\omega = M(x)$
- Reconstruct
  - Compute an unbiased estimate of Wx
  - Least Square Estimation is very slow for HDMM
  - Only works for domain size  $d \leq 10^{15}$





### **Our Method: Residual Planner**

- Select
  - Select a set of base mechanisms  $M_A(x) = R_A x + N(0, \sigma_A^2 R_A R_A^T)$
  - $R_A$  are mutually orthogonal, they form a linearly independent basis
  - Solve an optimization problem to get optimal noise level  $\sigma_A^2$
- Measure
  - Get the noisy outputs  $\omega_A = M_A(x)$
- Reconstruct
  - $R_A^+$  has a closed form expression
  - Works with domain size  $d = 10^{100}$





# **Residual Planner Advantages**

- Optimize for a wide variety of convex objective functions
  - Guaranteed to be optimal under Gaussian noise.
- It is highly scalable
  - Run in seconds even when other scalable algorithms run out of memory.
- Return the variance and covariances of the desired marginals.





### **Scalability**

Table 1: Time for Selection Step in seconds on Synth $-n^d$  dataset. n = 10 and the number of attributes d varies. The workload consists of all marginals on  $\leq 3$  attributes each. Times for HDMM are reported with  $\pm 2$  standard deviations.

| d   | HDMM                             | ResidualPlanner                 | ResidualPlanner                 |  |
|-----|----------------------------------|---------------------------------|---------------------------------|--|
|     | RMSE Objective                   | RMSE Objective                  | Max Variance Objective          |  |
| 2   | $0.013 \pm 0.003$ sec            | $0.001 \pm 0.0008$ sec          | $0.007 \pm 0.001 \text{ sec}$   |  |
| 6   | $0.065 \pm 0.012  m ~sec$        | $0.002 \pm 0.0008$ sec          | $0.009 \pm 0.001 \text{ sec}$   |  |
| 10  | $0.639 \pm 0.059~{ m sec}$       | $0.009 \pm 0.001 \text{ sec}$   | $0.018 \pm 0.001 \text{ sec}$   |  |
| 12  | $4.702 \pm 0.315 \text{ sec}$    | $0.015 \pm 0.001 \text{ sec}$   | $0.028 \pm 0.001 \text{ sec}$   |  |
| 14  | $46.054 \pm 12.735 \text{ sec}$  | $0.025 \pm 0.002 \text{ sec}$   | $0.041 \pm 0.001 \text{ sec}$   |  |
| 15  | $201.485 \pm 13.697 \text{ sec}$ | $0.030 \pm 0.017 \text{ sec}$   | $0.050 \pm 0.001 \text{ sec}$   |  |
| 20  | Out of memory                    | $0.079 \pm 0.017 \text{ sec}$   | $0.123 \pm 0.023  m ~sec$       |  |
| 30  | Out of memory                    | $0.247 \pm 0.019  m ~sec$       | $0.461 \pm 0.024  m ~sec$       |  |
| 50  | Out of memory                    | $1.207 \pm 0.047 \; \text{sec}$ | $4.011 \pm 0.112 \text{ sec}$   |  |
| 100 | Out of memory                    | $9.913\pm0.246~{ m sec}$        | $121.224 \pm 3.008 \; { m sec}$ |  |





#### **Optimizing Max Variance**

Table 3: Max Variance Comparisons with ResidualPlanner and HDMM (showing that being restricted to optimizing only RMSE is not a good approximation of Max Variance optimization).

|                        | Adult Dataset |          | CPS Dataset |         | Loans Dataset |          |
|------------------------|---------------|----------|-------------|---------|---------------|----------|
| Workload               | ResPlan       | HDMM     | ResPlan     | HDMM    | ResPlan       | HDMM     |
| 1-way Marginals        | 12.047        | 41.772   | 4.346       | 13.672  | 10.640        | 33.256   |
| 2-way Marginals        | 67.802        | 599.843  | 7.897       | 47.741  | 52.217        | 437.478  |
| 3-way Marginals        | 236.843       | 5675.238 | 7.706       | 71.549  | 156.638       | 3095.997 |
| $\leq$ 3-way Marginals | 253.605       | 6677.253 | 13.216      | 415.073 | 180.817       | 4317.709 |





# Thank you!





1000