
SORTING WITH PREDICTIONS

XINGJIAN BAI, CHRISTIAN COESTER

Traditional Algorithms

Worst-case guarantees
Pessimistic?

Machine Learning Models

Often very powerful
No guarantee

Algorithms with predictions

Goal: Good predictions much better performance
 Bad predictions same worst-case guarantee

⟹
⟹

Real life worst case, often predictable
(e.g., solve similar instances repeatedly)

≠

Motivation

Task: Sort an array of items, , wrt. <

Positional Prediction Setting:

Receive prediction of the ranking of each item

a1, a2, …, an

Sorting with Predictions

Dirty Comparison Setting:

Access to quick-and-dirty comparisons between each pair of items,
besides slow-and-clean comparisons.

Input:

 : true ranking of in the sorted list
 : predicted ranking of in the sorted list

Error:

a1, a2, …, an

p(i) ai
̂p(i) ai

ηi = | ̂p(i) − p(i) |

Sorting with Positional Predictions

Displacement Sort: O (∑
n

i=1
log(ηi + 2))

Input:

 true ranking of in the sorted list
 prediction of ’s ranking in the sorted list

Error: , equals to the absolute difference between

 and

a1, a2, …, an

ai
̂p(i) ai

ηi = | ̂p(i) − p(i) |

ηl
i := {j ∈ [n] : ̂p(j) ≤ ̂p(i) ∧ p(j) > p(i)}

ηr
i := {j ∈ [n] : ̂p(j) ≥ ̂p(i) ∧ p(j) < p(i)}

Sorting with Positional Predictions

Double-Hoover Sort: O (
n

∑
i=1

log (min {ηl
i , ηr

i } + 2))

Input:

 slow-and-clean comparator <
 quick-and-dirty comparator

Error:

a1, a2, …, an

<̂

ηi := #{j : (aj < ai) ≠ (aj <̂ ai)}

Sorting with Dirty Comparisons

Dirty-Clean Sort: dirty comparisons
 and clean comparisons

O(n log n)
O (∑

n

i=1
log(ηi + 2))

Idea: Build BST wrt. <
 Guide insertions via and <<̂

1

2

4

15

8

5 9

20

16 24

22 25

7
7 <̂ 15

4 <̂ 7

8 <̂ 7

9 <̂ 7

Dirty-Clean Sort Algorithm

Phase 1: Dirty Probing

1

2

4

15

8

5 9

20

16 24

22 25

7

(−∞,15]

[4,15]

[8,15]

[9,15]

Idea: Build BST wrt. <
 Guide insertions via and <<̂

Dirty-Clean Sort Algorithm

Phase 2: Verification

1

2

4

15

8

5 9

20

16 24

22 25

7

(−∞,15]

[4,15]

[8,15]

Idea: Build BST wrt. <
 Guide insertions via and <<̂

Dirty-Clean Sort Algorithm

Phase 2: Verification

1

2

4

15

8

5 9

20

16 24

22 25

7

(−∞,15]

[4,15]

Idea: Build BST wrt. <
 Guide insertions via and <<̂

Dirty-Clean Sort Algorithm

Phase 2: Verification

1

2

4

15

8

5 9

20

16 24

22 25

7

(−∞,15]

[4,15]

Idea: Build BST wrt. <
 Guide insertions via and <<̂

Dirty-Clean Sort Algorithm

Phase 3: Clean Insert

1

2

4

15

8

5 9

20

16 24

22 25

7

O(log n)

O(log ηi)

Idea: Build BST wrt. <
 Guide insertions via and <<̂

Dirty-Clean Sort Algorithm

Phase 3: Clean Insert

Double-Hoover Sort Algorithm
Idea: Bucket Sort the items w.r.t. ̂p(i)

Two "Hoovers", L and R, scan through the array repeatedly in
 roundslog(n)

8269 28 67 49 71 64 38 9 81ai

Double-Hoover Sort Algorithm
Idea: Bucket Sort the items w.r.t. ̂p(i)

8269 28 67 49 71 64 38 9 81ai

In round , each Hoover sucks in items that costs comparisons
to be inserted.

i i

Round 1

Two "Hoovers", L and R, scan through the array repeatedly in
 roundslog(n)

Double-Hoover Sort Algorithm
Idea: Bucket Sort the items w.r.t. ̂p(i)

28 67 49 71 64 38ai

69 829 81

Round 1

Two "Hoovers", L and R, scan through the array repeatedly in
 roundslog(n)

In round , each Hoover sucks in items that costs comparisons
to be inserted.

i i

Double-Hoover Sort Algorithm
Idea: Bucket Sort the items w.r.t. ̂p(i)

28 67 49 71 64 38ai

69 82 9 81

Round 2

Two "Hoovers", L and R, scan through the array repeatedly in
 roundslog(n)

In round , each Hoover sucks in items that costs comparisons
to be inserted.

i i

Double-Hoover Sort Algorithm
Idea: Bucket Sort the items w.r.t. ̂p(i)

67 49 64ai

71 8269289 38 81

Round 2

Two "Hoovers", L and R, scan through the array repeatedly in
 roundslog(n)

In round , each Hoover sucks in items that costs comparisons
to be inserted.

i i

Double-Hoover Sort Algorithm
Idea: Bucket Sort the items w.r.t. ̂p(i)

67 49 64ai

71 826928 9 38 81

Round 3

Two "Hoovers", L and R, scan through the array repeatedly in
 roundslog(n)

Double-Hoover Sort Algorithm
Idea: Bucket Sort the items w.r.t. ̂p(i)

9 38 49 64 81 71 82696728

Finally, combine items in both Hoovers

Each is sucked into the Hoovers before round ai log(min {ηl
i , ηr

i })

Two "Hoovers", L and R, scan through the array repeatedly in
 roundslog(n)

In round , each Hoover sucks in items that costs comparisons
to be inserted.

i i

Experiments: Country Population Ranking
Sorting countries by population (n=261)

Predictions: ranking years agox

Experiments: Class Setting
Classes of consecutive items (n=1,000,000)

Predictions: random position within class

Experiments: Decay Setting

Repeatedly add to , for random (n=1,000,000)±1 ̂p(i) i

Experiments: Bad-Dominating Setting

Fraction of items damaged (n=100,000)

 random if an item damaged, otherwise correct

r

<̂

Experiments: Good-Dominating Setting

Fraction of items damaged (n=100,000)

 random if both items damaged, otherwise correct

r

<̂

