

Beyond Myopia: Learning from Positive and Unlabeled Data through Holistic Predictive Trends

Xinrui Wang 2023/10/21

Background - Positive and Unlabeled Learning (PUL)

- Definition of PUL: A binary classification task with limited positive labeled data and a large amount of unlabeled data¹
- Formalization: Positive set $\mathcal{X}_{+} = \{x_i, y_i = 0\}_{i=1}^{n_+}$ & Unlabeled set $\mathcal{X}_{u} = \{x_i\}_{i=1}^{n_u}$

¹Xiao-Li Li and Bing Liu. "Learning from positive and unlabeled examples with different data distributions". In: *European* conference on machine learning. Springer. 2005, pp. 218–229.

Background - Application

Real-world applications: Matrix Completion², Deceptive Reviews Detection³, Fraud Detection⁴ & Medical Diagnosis⁵.

²Cho-Jui Hsieh, Nagarajan Natarajan, and Inderjit Dhillon. "PU learning for matrix completion". In: International conference on machine learning. PMLR. 2015, pp. 2445–2453.

³Yafeng Ren, Donghong Ji, and Hongbin Zhang. "Positive unlabeled learning for deceptive reviews detection". In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014, pp. 488–498.

⁴Xiaoli Li, Bing Liu, and See-Kiong Ng. "Learning to Identify Unexpected Instances in the Test Set.". In: IJCAI. vol. 7. 2007, pp. 2802–2807.

⁵Peng Yang et al. "Positive-unlabeled learning for disease gene identification". In: *Bioinformatics* 28.20 (2012), pp. 2640–2647.

Background - Application

Real-world applications: Matrix Completion², Deceptive Reviews Detection³, Fraud Detection⁴ & Medical Diagnosis⁵.

Serve as a basic component of more advanced ML problems.

²Cho-Jui Hsieh, Nagarajan Natarajan, and Inderjit Dhillon. "PU learning for matrix completion". In: International conference on machine learning. PMLR. 2015, pp. 2445–2453.

³Yafeng Ren, Donghong Ji, and Hongbin Zhang. "Positive unlabeled learning for deceptive reviews detection". In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014, pp. 488–498.

⁴Xiaoli Li, Bing Liu, and See-Kiong Ng. "Learning to Identify Unexpected Instances in the Test Set.". In: IJCAI. vol. 7. 2007, pp. 2802–2807.

⁵Peng Yang et al. "Positive-unlabeled learning for disease gene identification". In: *Bioinformatics* 28.20 (2012), pp. 2640–2647.

Background - Method

Starting from standard binary PN classification (ERM)

$$\hat{R}_{PN}(g) = \pi \hat{R}_p^+(g) + (1 - \pi)\hat{R}_n^-(g)$$
(1)

where
$$\hat{R}_p^+(g) = \frac{1}{n_+} \sum_{x_i \in \mathcal{X}_+} l(g(x_i), +1), \hat{R}_n^-(g) = \frac{1}{n_-} \sum_{x_i \in \mathcal{X}_-} l(g(x_i), -1).$$

Background - Method

Starting from standard binary PN classification (ERM)

$$\hat{R}_{PN}(g) = \pi \hat{R}_p^+(g) + (1 - \pi)\hat{R}_n^-(g)$$
(1)

where
$$\hat{R}_p^+(g) = \frac{1}{n_+} \sum_{x_i \in \mathcal{X}_+} l(g(x_i), +1), \hat{R}_n^-(g) = \frac{1}{n_-} \sum_{x_i \in \mathcal{X}_-} l(g(x_i), -1).$$

• Since $R_u^-(g) = \pi R_p^-(g) + (1 - \pi)R_n^-(g)$, an unbiased PU risk estimator:

$$\hat{R}_{PU}(g) = \pi \hat{R}_p^+(g) - \pi \hat{R}_p^-(g) + \hat{R}_u^-(g)$$
⁽²⁾

where
$$\hat{R}_p^-(g) = \frac{1}{n_+} \sum_{x_i \in \mathcal{X}_+} l(g(x_i), -1), \hat{R}_u^-(g) = \frac{1}{n_u} \sum_{x_i \in \mathcal{X}_u} l(g(x_i), -1).$$

Under certain assumptions on loss functions:

$$\hat{R}_{PU}(g) = 2\pi \hat{R}_p^+(g) + \hat{R}_u^-(g) - \pi$$
(3)

The unbiased risk estimator can be perceived as a reweighting or resampling based on positive prior π .

Assumption: The dataset consists of n i.i.d. samples from the following distributions:

$$\mathbb{P}(x|y=0) \sim \mathcal{N}(+v, \sigma^2 I_{p \times p}),$$

$$\mathbb{P}(x|y=1) \sim \mathcal{N}(-v, \sigma^2 I_{p \times p}).$$
(4)

where v is an arbitrary unit vector in \mathbb{R}^p and σ^2 is a small constant, radii $\sigma\sqrt{p} >> 2$ when $n, p \to \infty$ which makes this classification nontrivial.

Assumption: The dataset consists of n i.i.d. samples from the following distributions:

$$\mathbb{P}(x|y=0) \sim \mathcal{N}(+v, \sigma^2 I_{p \times p}),$$

$$\mathbb{P}(x|y=1) \sim \mathcal{N}(-v, \sigma^2 I_{p \times p}).$$
(4)

where v is an arbitrary unit vector in \mathbb{R}^p and σ^2 is a small constant, radii $\sigma\sqrt{p} >> 2$ when $n, p \to \infty$ which makes this classification nontrivial.

Under the above Assumption, the Bayesian optimal decision hyperplane h_{pu} derived from an appropriate resampling strategy is equivalent to the Bayesian optimal decision hyperplane h^{*}_{pn}.

$$h_{pu} = h_{pn}^*. (5)$$

Typically, PUL methods can be divided into two main categories: cost-sensitive methods & sample-selection methods.

- The cost-sensitive methods rely on the negativity assumption⁶, which may introduce estimation bias due to the mislabeling of positive examples as negative.
- The sample-selection methods struggle with distinguishing reliable negative examples⁷, particularly during the initial stage, which also results in error accumulation during the training process.
- This bias can be accumulated and even worsen during later training stages, making its elimination challenging⁸.

⁶Ryuichi Kiryo et al. "Positive-unlabeled learning with non-negative risk estimator". In: Advances in neural information processing systems 30 (2017).

⁷Hwanjo Yu, Jiawei Han, and Kevin Chen-Chuan Chang. "PEBL: positive example based learning for web page classification using SVM". In: *Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining*. 2002, pp. 239–248.

⁸Daiki Tanaka, Daiki Ikami, and Kiyoharu Aizawa. A Novel Perspective for Positive-Unlabeled Learning via Noisy Labels. 2021. arXiv: 2103.04685.

► To verify it, we make a simple pilot experiment:

$$\mathcal{L} = \frac{1}{|\mathcal{X}_{+}|} \sum_{(x_{i}, y_{i}) \in \mathcal{X}_{+}} \ell(\hat{y}_{i}, y_{i}) + \frac{1}{|\mathcal{X}_{u}|} \sum_{x_{i} \in \mathcal{X}_{u}} \ell(\hat{y}_{i}, 1), \ \hat{y}_{i} = f(x_{i}).$$
(6)

► To verify it, we make a simple pilot experiment:

$$\mathcal{L} = \frac{1}{|\mathcal{X}_{+}|} \sum_{(x_{i}, y_{i}) \in \mathcal{X}_{+}} \ell(\hat{y}_{i}, y_{i}) + \frac{1}{|\mathcal{X}_{u}|} \sum_{x_{i} \in \mathcal{X}_{u}} \ell(\hat{y}_{i}, 1), \ \hat{y}_{i} = f(x_{i}).$$
(6)

Serious overfits occur:

► To verify it, we make a simple pilot experiment:

$$\mathcal{L} = \frac{1}{|\mathcal{X}_{+}|} \sum_{(x_{i}, y_{i}) \in \mathcal{X}_{+}} \ell(\hat{y}_{i}, y_{i}) + \frac{1}{|\mathcal{X}_{u}|} \sum_{x_{i} \in \mathcal{X}_{u}} \ell(\hat{y}_{i}, 1), \ \hat{y}_{i} = f(x_{i}).$$
(6)

Serious overfits occur:

From another perspective, as a basic component for various PUL methods, the resampling method shows its potential.

► Threshold selection on CIFAR10-1 & CIFAR10-2:

Threshold selection on CIFAR10-1 & CIFAR10-2:

Different from cost-sensitive methods & sample-selection methods relying on one single-step prediction that is prone to model uncertainty, we take a holistic view and examine the predictive trend of unlabeled data during the training process.

Observation

Averaged predicting scores (output probability) of positive (left) and negative (right) examples in an unlabeled dataset during the first 30 epochs of training.

⁹Sheng Liu et al. "Early-learning regularization prevents memorization of noisy labels". In: Advances in neural information processing systems 33 (2020), pp. 20331–20342.

Observation

Averaged predicting scores (output probability) of positive (left) and negative (right) examples in an unlabeled dataset during the first 30 epochs of training.

▶ The averaged predictive trends for different classes exhibit significant differences.

⁹Sheng Liu et al. "Early-learning regularization prevents memorization of noisy labels". In: Advances in neural information processing systems 33 (2020), pp. 20331–20342.

Observation

Averaged predicting scores (output probability) of positive (left) and negative (right) examples in an unlabeled dataset during the first 30 epochs of training.

- ▶ The averaged predictive trends for different classes exhibit significant differences.
- Possible explanation: model's early focus on learning simpler patterns, which aligns with the early learning theory of noisy labels⁹.

⁹Sheng Liu et al. "Early-learning regularization prevents memorization of noisy labels". In: Advances in neural information processing systems 33 (2020), pp. 20331–20342.

Identifying Predictive Trends

We treat the prediction trend as a Temporal Point Process (TPP) and perform a Mann-Kendall Test to detect the predictive trends.

Identifying Predictive Trends

We treat the prediction trend as a Temporal Point Process (TPP) and perform a Mann-Kendall Test to detect the predictive trends.

Measure the differences between positive and negative examples through our proposed trend score S.

$$\hat{S} = \frac{2}{t(t-1)} \sum_{i=1}^{t-1} \sum_{j=i+1}^{t} \psi(\alpha \Delta p_{ij}), \ \psi(\Delta p_{ij}) = sign(\Delta p_{ij}) \cdot log(1+|\Delta p_{ij}|+\Delta p_{ij}^2/2)$$

(7)

Identifying Predictive Trends

Theorem: Let $P = \{p_{ij} | 1 \le i \le t - 1, 2 \le j \le t, i < j\}$ be an observation set of changes in predictions in which $\mathbb{E}[\Delta p]$ is the expected values of the ordered difference in a temporal point process and σ^2 is the variance of P. By exploiting the non-decreasing influence function $\psi(\cdot)$, for any $\epsilon > 0$, we have the following bound with probability at least $1 - 2\epsilon$:

$$|\hat{S} - \alpha \mathbb{E}[\Delta p]| < \frac{2\alpha \sigma \sqrt{\frac{2log(\epsilon^{-1})}{t(t-1)}}}{1 - \sqrt{\frac{2log(\epsilon^{-1})}{t(t-1)\alpha^2\sigma^2}}} = O\Big(\Big(log(\epsilon^{-1})\Big)^{\frac{1}{2}}t^{-1}\Big).$$
(8)

In the existing literature, threshold-based criteria and small loss criteria are the two primary approaches used for selecting reliable or clean examples.

- In the existing literature, threshold-based criteria and small loss criteria are the two primary approaches used for selecting reliable or clean examples.
- Requiring extensive hyperparameter tuning efforts to choose appropriate thresholds or ratios for data selection.

- In the existing literature, threshold-based criteria and small loss criteria are the two primary approaches used for selecting reliable or clean examples.
- Requiring extensive hyperparameter tuning efforts to choose appropriate thresholds or ratios for data selection.
- Clustering Unlabeled Data by the Fisher Criterion:

$$\min_{C_1,C_2} \frac{\sum_{x \in C_1} (\hat{S}_x - \mu_1)^2}{|C_1|} + \frac{\sum_{x \in C_2} (\hat{S}_x - \mu_2)^2}{|C_2|}$$
s.t. $C_1 \cap C_2 = \emptyset, \ C_1 \cup C_2 = x_1, x_2, \dots, x_N.$
(9)

- In the existing literature, threshold-based criteria and small loss criteria are the two primary approaches used for selecting reliable or clean examples.
- Requiring extensive hyperparameter tuning efforts to choose appropriate thresholds or ratios for data selection.
- Clustering Unlabeled Data by the Fisher Criterion:

$$\min_{C_1,C_2} \frac{\sum_{x \in C_1} (\hat{S}_x - \mu_1)^2}{|C_1|} + \frac{\sum_{x \in C_2} (\hat{S}_x - \mu_2)^2}{|C_2|}$$
s.t. $C_1 \cap C_2 = \emptyset, \ C_1 \cup C_2 = x_1, x_2, \dots, x_N.$
(9)

Once the unlabeled data is classified, the remaining task becomes a straightforward supervised learning problem.

Transductive Results

Dataset	F-MNIST-1	F-MNIST-2	CIFAR10-1	CIFAR10-2	Credit Card	Alzheimer
nnPU	85.31	82.46	83.11	83.23	62.53	64.01
PGPU	92.02	90.17	85.67	88.38	42.12	75.09
Self-PU	94.04	91.59	84.06	83.77	71.00	70.05
P ³ MIX-C	91.59	87.65	86.05	88.14	76.21	68.01
Ours	95.41	96.00	91.42	91.17	98.90	75.13

Classification accuracy (Recall rate is reported on Credit Card):

Transductive Results

Dataset	F-MNIST-1	F-MNIST-2	CIFAR10-1	CIFAR10-2	Credit Card	Alzheimer
nnPU	85.31	82.46	83.11	83.23	62.53	64.01
PGPU	92.02	90.17	85.67	88.38	42.12	75.09
Self-PU	94.04	91.59	84.06	83.77	71.00	70.05
P ³ MIX-C	91.59	87.65	86.05	88.14	76.21	68.01
Ours	95.41	96.00	91.42	91.17	98.90	75.13

Classification accuracy (Recall rate is reported on Credit Card):

Positive prior estimation (Absolute error with the true positive prior):

Algorithm	F-MNIST-1	F-MNIST-2	CIFAR10-1	CIFAR10-2	STL10-1	STL10-2	Credit Card	Alzheimer
π	0.40	0.60	0.40	0.60	0.50	0.50	0.05	0.50
KM2	0.146	0.106	0.115	0.164	0.096	0.101	0.236	0.094
BBE*	0.082	0.073	0.034	0.059	0.046	0.064	0.112	0.026
$(TED)^n$	0.026	0.020	0.042	0.044	0.024	0.021	0.018	0.014
Ours	0.014	0.021	0.016	0.031	0.018	0.009	0.004	0.011

Main Results

Results of classification accuracy (%) on 3 generic datasets with 6 settings (mean±std):

Algorithm	F-MNIST-1	F-MNIST-2	CIFAR10-1	CIFAR10-2	STL10-1	STL10-2
uPU	$81.6 {\pm} 1.2$	85.7±2.6	76.5±2.5	$71.6 {\pm} 1.4$	76.7±3.8	78.2±4.1
nnPU	$91.4{\pm}0.6$	$90.2{\pm}0.7$	84.7±2.4	83.7±0.6	$77.1{\pm}4.5$	$80.4{\pm}2.7$
Self-PU	$90.8 {\pm} 0.4$	$89.1{\pm}0.7$	$85.1{\pm}0.8$	$83.9 {\pm} 2.6$	$78.5{\pm}1.1$	$80.8 {\pm} 2.1$
PAN	87.7±2.4	89.9±3.2	87.0±0.3	$82.8 {\pm} 1.0$	$77.7 {\pm} 2.5$	$79.8{\pm}1.4$
vPU	$92.6{\pm}1.2$	$90.5{\pm}0.8$	$86.8 {\pm} 1.2$	$82.5 {\pm} 1.1$	$78.4{\pm}1.1$	$82.9{\pm}0.7$
MIXPUL	$90.4{\pm}1.2$	$89.6 {\pm} 1.2$	$87.0 {\pm} 1.9$	$87.0 {\pm} 1.1$	$77.8{\pm}0.7$	$78.9{\pm}1.9$
PULNS	$91.0{\pm}0.5$	$89.1{\pm}0.8$	$87.2 {\pm} 0.6$	$83.7{\pm}2.9$	$80.2{\pm}0.8$	$83.6{\pm}0.7$
Dist-PU	$94.7 {\pm} 0.4$	$92.4 {\pm} 0.4$	$86.8{\pm}0.7$	$87.2{\pm}0.9$	$79.8{\pm}0.6$	$82.9{\pm}0.4$
P^3MIX-E	$92.6{\pm}0.4$	$91.8{\pm}0.2$	$88.2{\pm}0.4$	$84.7{\pm}0.5$	$80.2{\pm}0.9$	$83.7{\pm}0.7$
P ³ MIX-C	$92.8{\pm}0.6$	$90.4{\pm}0.1$	$88.7{\pm}0.4$	$87.9{\pm}0.5$	$80.7{\pm}0.7$	$84.1{\pm}0.3$
Ours	95.8±0.3	96.0±0.3	91.1±0.2	90.3±0.1	83.7±0.3	85.3±0.6

Main Results

Algorithm	F1 score	Recall	Accuracy	Precision	AUC
uPU	89.5±3.1	83.4±1.3	97.0±0.2	96.5±3.6	93.4±3.1
nnPU	$89.9 {\pm} 1.0$	$83.4{\pm}1.3$	$98.4{\pm}0.1$	$97.4 {\pm} 1.1$	$94.2{\pm}0.9$
nnPU+mixup	89.0±2.8	$82.9 {\pm} 1.6$	$98.1{\pm}0.1$	96.0±3.2	$93.8{\pm}2.9$
Self-PU	89.0±2.4	$85.8 {\pm} 2.0$	$99.2{\pm}0.1$	92.4±3.4	$95.6{\pm}2.8$
PAN	$91.5{\pm}0.9$	$85.4{\pm}1.3$	$99.1{\pm}0.1$	$98.5 {\pm} 1.0$	$96.6{\pm}1.1$
VPU	$91.7 {\pm} 3.9$	$84.9 {\pm} 5.7$	$98.6 {\pm} 0.5$	99.7±0.6	$96.9 {\pm} 3.1$
MIXPUL	82.9±2.8	$86.6 {\pm} 1.3$	98.4±0.3	$79.2 {\pm} 3.5$	$91.3{\pm}0.7$
PULNS	89.0±2.0	$83.2{\pm}2.1$	$99.0{\pm}0.1$	$95.6 {\pm} 1.9$	$94.5 {\pm} 0.7$
Dist-PU	87.9±3.4	$80.2{\pm}4.1$	98.8±0.4	$97.2{\pm}1.6$	$96.5 {\pm} 2.7$
P ³ MIX-E	$91.9 {\pm} 2.1$	87.7±2.0	$99.0{\pm}0.1$	$96.5 {\pm} 1.8$	$97.5 {\pm} 0.9$
P ³ MIX-C	$90.2{\pm}1.4$	$86.5{\pm}1.8$	$98.8{\pm}0.1$	$94.1{\pm}1.2$	97.3±1.2
Our Method	99.1±0.2	99.0±0.2	99.1±0.1	99.3±0.1	99.7±0.1

► Comparative results(%) on Credit Card Fraud dataset (mean±std):

Main Results

Algorithm	F1 score	Recall	Accuracy	Precision	AUC
uPU	67.6±2.8	$66.1{\pm}6.1$	68.5±2.2	69.7±3.5	73.8±2.9
nnPU	68.6±3.2	69.5±7.2	$68.3 {\pm} 2.1$	$68.0{\pm}2.3$	$72.9{\pm}2.8$
RP	$62.1{\pm}5.6$	$64.6{\pm}15.9$	$61.6{\pm}3.2$	$61.9{\pm}4.5$	66.1 ± 3.3
PUSB	$69.2 {\pm} 2.4$	$69.3{\pm}2.4$	$69.2 {\pm} 2.4$	$69.2 {\pm} 2.4$	$74.4{\pm}2.4$
PUbN	$70.4{\pm}3.2$	$72.0 {\pm} 8.4$	$70.0{\pm}1.3$	$69.4{\pm}2.5$	$70.0{\pm}1.3$
Self-PU	$72.1 {\pm} 1.1$	$75.4{\pm}5.1$	$70.9{\pm}0.7$	$69.3{\pm}2.5$	$75.9{\pm}1.8$
aPU	$70.5 {\pm} 3.4$	75.7 ± 8.2	$68.5{\pm}1.8$	$66.2{\pm}0.9$	70.7 ± 3.7
VPU	$70.2{\pm}1.1$	$76.7 {\pm} 3.6$	$67.4 {\pm} 0.7$	$64.7 {\pm} 1.1$	$73.1{\pm}0.9$
ImbPU	$68.8{\pm}1.9$	$70.6{\pm}6.5$	$68.2{\pm}0.8$	$67.5{\pm}2.5$	$73.8{\pm}0.7$
Dist-PU	$73.7{\pm}1.6$	$\textbf{80.1}{\pm}\textbf{5.1}$	$71.6{\pm}0.6$	$68.5{\pm}1.2$	$\textbf{77.1}{\pm}\textbf{0.7}$
Our Method	74.5±2.4	$79.5{\pm}5.8$	72.8±0.9	$\textbf{70.2}{\pm}\textbf{1.6}$	77.1±2.3

► Comparative results(%) on Alzheimer dataset (mean±std):

Ablation Study

Ablation results (%) on CIFAR-10 (acc), Credit Fraud (recall) and Alzheimer (f1 score). "√" indicates the enabling of the corresponding components.

Trend Measure			Cluster	ng		Dataset		
Resampling TS	Simplified TS	MK	Natural break	k-means	CIFAR10-1	Credit Fraud	Alzheimer	
	\checkmark	V		\checkmark	84.1 89.4 90.2 90.7 91.1	88.6 99.3 99.0 99.2 99.1	69.2 70.5 69.7 73.9 74.5	

Sensitivity Analysis

Sensitivity analysis was performed on two parameters: α (left) and stopping iteration (right). The stopping iteration of LZO (also the one we use) is denoted by '*' on the right.

Future Works

 Similar concepts can be utilized to enhance out-of-distribution (OOD) data detection or semi-supervised learning.

Future Works

- Similar concepts can be utilized to enhance out-of-distribution (OOD) data detection or semi-supervised learning.
- When we look into this problem the majority of unlabeled data is positive or negative. It even makes PUL two completely different questions.

Method	$\pi = 0$.124, γ =	= 1000	$\pi =$	0.712, γ	= 10	$\pi = 0.888, \ \gamma = 100 \qquad \pi = 0.960, \ \gamma =$	= 1000				
	ACC	AUC	F1	ACC	AUC	F1	ACC	AUC	F1	ACC	AUC	F1
Resampling	92.05	96.41	91.45	74.13	82.32	42.10	70.40	79.45	35.31	67.24	71.90	14.11
ImbPU	92.61	97.12	92.51	83.22	93.15	86.11	74.12	84.58	77.25	71.27	80.31	65.47
Ours	92.52	96.60	92.80	83.57	90.84	86.85	80.01	90.02	84.68	75.35	88.51	80.72

Thank you!

