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Background - Positive and Unlabeled Learning (PUL)
▶ Definition of PUL: A binary classification task with limited positive labeled data

and a large amount of unlabeled data1

▶ Formalization: Positive set X+ = {xi, yi = 0}n+

i=1 & Unlabeled set Xu = {xi}nu
i=1

1Xiao-Li Li and Bing Liu. “Learning from positive and unlabeled examples with different data distributions”. In: European
conference on machine learning. Springer. 2005, pp. 218–229.
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Background - Application

▶ Real-world applications: Matrix Completion2, Deceptive Reviews Detection3, Fraud
Detection4 & Medical Diagnosis5.

▶ Serve as a basic component of more advanced ML problems.

2Cho-Jui Hsieh, Nagarajan Natarajan, and Inderjit Dhillon. “PU learning for matrix completion”. In: International conference on
machine learning. PMLR. 2015, pp. 2445–2453.

3Yafeng Ren, Donghong Ji, and Hongbin Zhang. “Positive unlabeled learning for deceptive reviews detection”. In: Proceedings of
the 2014 conference on empirical methods in natural language processing (EMNLP). 2014, pp. 488–498.

4Xiaoli Li, Bing Liu, and See-Kiong Ng. “Learning to Identify Unexpected Instances in the Test Set.”. In: IJCAI. vol. 7. 2007,
pp. 2802–2807.

5Peng Yang et al. “Positive-unlabeled learning for disease gene identification”. In: Bioinformatics 28.20 (2012), pp. 2640–2647.
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Background - Method

▶ Starting from standard binary PN classification (ERM)

R̂PN (g) = πR̂+
p (g) + (1− π)R̂−

n (g) (1)

where R̂+
p (g) =

1

n+

∑
xi∈X+

l(g(xi),+1), R̂−
n (g) =

1

n−

∑
xi∈X−

l(g(xi),−1).

▶ Since R−
u (g) = πR−

p (g) + (1− π)R−
n (g), an unbiased PU risk estimator:

R̂PU (g) = πR̂+
p (g)− πR̂−

p (g) + R̂−
u (g) (2)

where R̂−
p (g) =

1

n+

∑
xi∈X+

l(g(xi),−1), R̂−
u (g) =

1

nu

∑
xi∈Xu

l(g(xi),−1).
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Introduction

▶ Under certain assumptions on loss functions:

R̂PU (g) = 2πR̂+
p (g) + R̂−

u (g)− π (3)

The unbiased risk estimator can be perceived as a reweighting or resampling based
on positive prior π.
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Introduction

▶ Assumption: The dataset consists of n i.i.d. samples from the following
distributions:

P(x|y = 0) ∼ N (+v, σ2Ip×p),

P(x|y = 1) ∼ N (−v, σ2Ip×p).
(4)

where v is an arbitrary unit vector in Rp and σ2 is a small constant, radii
σ
√
p >> 2 when n, p→ ∞ which makes this classification nontrivial.

▶ Under the above Assumption, the Bayesian optimal decision hyperplane hpu
derived from an appropriate resampling strategy is equivalent to the Bayesian
optimal decision hyperplane h∗pn.

hpu = h∗pn. (5)
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Introduction
Typically, PUL methods can be divided into two main categories: cost-sensitive
methods & sample-selection methods.

▶ The cost-sensitive methods rely on the negativity assumption6, which may
introduce estimation bias due to the mislabeling of positive examples as negative.

▶ The sample-selection methods struggle with distinguishing reliable negative
examples7, particularly during the initial stage, which also results in error
accumulation during the training process.

▶ This bias can be accumulated and even worsen during later training stages, making
its elimination challenging8.

6Ryuichi Kiryo et al. “Positive-unlabeled learning with non-negative risk estimator”. In: Advances in neural information processing
systems 30 (2017).

7Hwanjo Yu, Jiawei Han, and Kevin Chen-Chuan Chang. “PEBL: positive example based learning for web page classification using
SVM”. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. 2002,
pp. 239–248.

8Daiki Tanaka, Daiki Ikami, and Kiyoharu Aizawa. A Novel Perspective for Positive-Unlabeled Learning via Noisy Labels. 2021.
arXiv: 2103.04685.
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Introduction
▶ To verify it, we make a simple pilot experiment:

L =
1

|X+|
∑

(xi,yi)∈X+

ℓ(ŷi, yi) +
1

|Xu|
∑

xi∈Xu

ℓ(ŷi, 1), ŷi = f(xi). (6)

▶ Serious overfits occur:
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▶ From another perspective, as a basic component for various PUL methods, the
resampling method shows its potential.
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Introduction

▶ Threshold selection on CIFAR10-1 & CIFAR10-2:
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▶ Different from cost-sensitive methods & sample-selection methods relying on one
single-step prediction that is prone to model uncertainty, we take a holistic view
and examine the predictive trend of unlabeled data during the training process.
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Observation
▶ Averaged predicting scores (output probability) of positive (left) and negative

(right) examples in an unlabeled dataset during the first 30 epochs of training.
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▶ The averaged predictive trends for different classes exhibit significant differences.
▶ Possible explanation: model’s early focus on learning simpler patterns, which aligns

with the early learning theory of noisy labels9.

9Sheng Liu et al. “Early-learning regularization prevents memorization of noisy labels”. In: Advances in neural information
processing systems 33 (2020), pp. 20331–20342.
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Identifying Predictive Trends
▶ We treat the prediction trend as a Temporal Point Process (TPP) and perform a

Mann-Kendall Test to detect the predictive trends.
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▶ Measure the differences between positive and negative examples through our
proposed trend score S.

Ŝ =
2

t(t− 1)

t−1∑
i=1

t∑
j=i+1

ψ(α∆pij), ψ(∆pij) = sign(∆pij)·log(1+|∆pij |+∆p2ij/2)

(7)
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Identifying Predictive Trends

Theorem: Let P = {pij |1 ≤ i ≤ t− 1, 2 ≤ j ≤ t, i < j} be an observation set of
changes in predictions in which E[∆p] is the expected values of the ordered difference
in a temporal point process and σ2 is the variance of P . By exploiting the
non-decreasing influence function ψ(·), for any ϵ > 0, we have the following bound with
probability at least 1− 2ϵ:

|Ŝ − αE[∆p]| <
2ασ

√
2log(ϵ−1)
t(t−1)

1−
√

2log(ϵ−1)
t(t−1)α2σ2

= O
((
log(ϵ−1)

) 1
2 t−1

)
. (8)
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New Labeling Approach

▶ In the existing literature, threshold-based criteria and small loss criteria are the two
primary approaches used for selecting reliable or clean examples.

▶ Requiring extensive hyperparameter tuning efforts to choose appropriate thresholds
or ratios for data selection.

▶ Clustering Unlabeled Data by the Fisher Criterion:

min
C1,C2

∑
x∈C1

(Ŝx − µ1)
2

|C1|
+

∑
x∈C2

(Ŝx − µ2)
2

|C2|
s.t. C1 ∩ C2 = ∅, C1 ∪ C2 = x1, x2, . . . , xN .

(9)

▶ Once the unlabeled data is classified, the remaining task becomes a straightforward
supervised learning problem.
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Transductive Results

▶ Classification accuracy (Recall rate is reported on Credit Card):

Dataset F-MNIST-1 F-MNIST-2 CIFAR10-1 CIFAR10-2 Credit Card Alzheimer

nnPU 85.31 82.46 83.11 83.23 62.53 64.01
PGPU 92.02 90.17 85.67 88.38 42.12 75.09
Self-PU 94.04 91.59 84.06 83.77 71.00 70.05

P3MIX-C 91.59 87.65 86.05 88.14 76.21 68.01
Ours 95.41 96.00 91.42 91.17 98.90 75.13

▶ Positive prior estimation (Absolute error with the true positive prior):

Algorithm F-MNIST-1 F-MNIST-2 CIFAR10-1 CIFAR10-2 STL10-1 STL10-2 Credit Card Alzheimer

π 0.40 0.60 0.40 0.60 0.50 0.50 0.05 0.50
KM2 0.146 0.106 0.115 0.164 0.096 0.101 0.236 0.094
BBE* 0.082 0.073 0.034 0.059 0.046 0.064 0.112 0.026

(TED)n 0.026 0.020 0.042 0.044 0.024 0.021 0.018 0.014
Ours 0.014 0.021 0.016 0.031 0.018 0.009 0.004 0.011
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Main Results

▶ Results of classification accuracy (%) on 3 generic datasets with 6 settings
(mean±std):

Algorithm F-MNIST-1 F-MNIST-2 CIFAR10-1 CIFAR10-2 STL10-1 STL10-2

uPU 81.6±1.2 85.7±2.6 76.5±2.5 71.6±1.4 76.7±3.8 78.2±4.1
nnPU 91.4±0.6 90.2±0.7 84.7±2.4 83.7±0.6 77.1±4.5 80.4±2.7

Self-PU 90.8±0.4 89.1±0.7 85.1±0.8 83.9±2.6 78.5±1.1 80.8±2.1
PAN 87.7±2.4 89.9±3.2 87.0±0.3 82.8±1.0 77.7±2.5 79.8±1.4
vPU 92.6±1.2 90.5±0.8 86.8±1.2 82.5±1.1 78.4±1.1 82.9±0.7

MIXPUL 90.4±1.2 89.6±1.2 87.0±1.9 87.0±1.1 77.8±0.7 78.9±1.9
PULNS 91.0±0.5 89.1±0.8 87.2±0.6 83.7±2.9 80.2±0.8 83.6±0.7
Dist-PU 94.7±0.4 92.4±0.4 86.8±0.7 87.2±0.9 79.8±0.6 82.9±0.4
P3MIX-E 92.6±0.4 91.8±0.2 88.2±0.4 84.7±0.5 80.2±0.9 83.7±0.7
P3MIX-C 92.8±0.6 90.4±0.1 88.7±0.4 87.9±0.5 80.7±0.7 84.1±0.3

Ours 95.8±0.3 96.0±0.3 91.1±0.2 90.3±0.1 83.7±0.3 85.3±0.6
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Main Results

▶ Comparative results(%) on Credit Card Fraud dataset (mean±std):

Algorithm F1 score Recall Accuracy Precision AUC

uPU 89.5±3.1 83.4±1.3 97.0±0.2 96.5±3.6 93.4±3.1
nnPU 89.9±1.0 83.4±1.3 98.4±0.1 97.4±1.1 94.2±0.9

nnPU+mixup 89.0±2.8 82.9±1.6 98.1±0.1 96.0±3.2 93.8±2.9
Self-PU 89.0±2.4 85.8±2.0 99.2±0.1 92.4±3.4 95.6±2.8
PAN 91.5±0.9 85.4±1.3 99.1±0.1 98.5±1.0 96.6±1.1
VPU 91.7±3.9 84.9±5.7 98.6±0.5 99.7±0.6 96.9±3.1

MIXPUL 82.9±2.8 86.6±1.3 98.4±0.3 79.2±3.5 91.3±0.7
PULNS 89.0±2.0 83.2±2.1 99.0±0.1 95.6±1.9 94.5±0.7
Dist-PU 87.9±3.4 80.2±4.1 98.8±0.4 97.2±1.6 96.5±2.7
P3MIX-E 91.9±2.1 87.7±2.0 99.0±0.1 96.5±1.8 97.5±0.9
P3MIX-C 90.2±1.4 86.5±1.8 98.8±0.1 94.1±1.2 97.3±1.2

Our Method 99.1±0.2 99.0±0.2 99.1±0.1 99.3±0.1 99.7±0.1
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Main Results

▶ Comparative results(%) on Alzheimer dataset (mean±std):

Algorithm F1 score Recall Accuracy Precision AUC

uPU 67.6±2.8 66.1±6.1 68.5±2.2 69.7±3.5 73.8±2.9
nnPU 68.6±3.2 69.5±7.2 68.3±2.1 68.0±2.3 72.9±2.8
RP 62.1±5.6 64.6±15.9 61.6±3.2 61.9±4.5 66.1±3.3

PUSB 69.2±2.4 69.3±2.4 69.2±2.4 69.2±2.4 74.4±2.4
PUbN 70.4±3.2 72.0±8.4 70.0±1.3 69.4±2.5 70.0±1.3
Self-PU 72.1±1.1 75.4±5.1 70.9±0.7 69.3±2.5 75.9±1.8

aPU 70.5±3.4 75.7±8.2 68.5±1.8 66.2±0.9 70.7±3.7
VPU 70.2±1.1 76.7±3.6 67.4±0.7 64.7±1.1 73.1±0.9

ImbPU 68.8±1.9 70.6±6.5 68.2±0.8 67.5±2.5 73.8±0.7
Dist-PU 73.7±1.6 80.1±5.1 71.6±0.6 68.5±1.2 77.1±0.7

Our Method 74.5±2.4 79.5±5.8 72.8±0.9 70.2±1.6 77.1±2.3
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Ablation Study

▶ Ablation results (%) on CIFAR-10 (acc), Credit Fraud (recall) and Alzheimer (f1
score). "✓" indicates the enabling of the corresponding components.

Trend Measure Clustering Dataset

Resampling TS Simplified TS MK Natural break k-means CIFAR10-1 Credit Fraud Alzheimer

✓ ✓ 84.1 88.6 69.2
✓ ✓ ✓ 89.4 99.3 70.5
✓ ✓ ✓ 90.2 99.0 69.7
✓ ✓ ✓ 90.7 99.2 73.9
✓ ✓ ✓ 91.1 99.1 74.5
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Sensitivity Analysis

▶ Sensitivity analysis was performed on two parameters: α (left) and stopping
iteration (right). The stopping iteration of LZO (also the one we use) is denoted
by ’∗’ on the right.
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Future Works

▶ Similar concepts can be utilized to enhance out-of-distribution (OOD) data
detection or semi-supervised learning.

▶ When we look into this problem the majority of unlabeled data is positive or
negative. It even makes PUL two completely different questions.

Method π = 0.124, γ = 1000 π = 0.712, γ = 10 π = 0.888, γ = 100 π = 0.960, γ = 1000

ACC AUC F1 ACC AUC F1 ACC AUC F1 ACC AUC F1

Resampling 92.05 96.41 91.45 74.13 82.32 42.10 70.40 79.45 35.31 67.24 71.90 14.11
ImbPU 92.61 97.12 92.51 83.22 93.15 86.11 74.12 84.58 77.25 71.27 80.31 65.47

Ours 92.52 96.60 92.80 83.57 90.84 86.85 80.01 90.02 84.68 75.35 88.51 80.72
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Thank you!
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