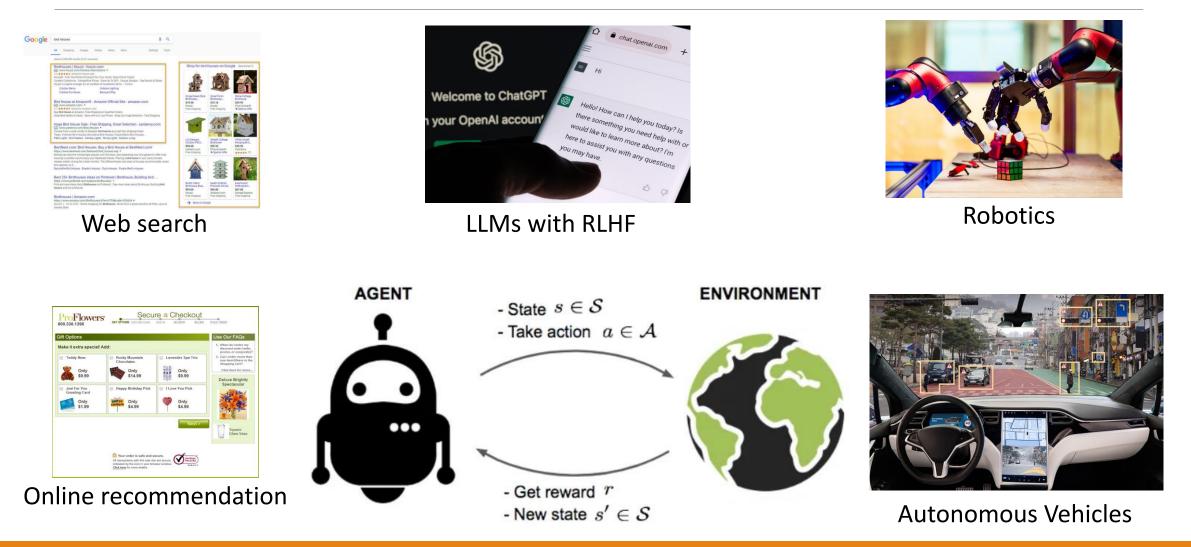




## Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation

Nikki Lijing Kuang\*, Ming Yin\*, Mengdi Wang, Yu-Xiang Wang, Yi-An Ma

## **Sequential Decision Making**



# **RL with Function Approximation**

- Empirical success of RL requires function approximation to handle high-dimensional spaces
- Collecting real-world data can be expensive
- Sample-efficient algorithms for the agent to learn using limited amount of samples

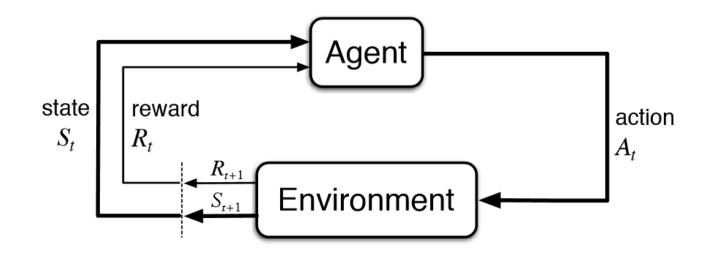




## **Limited Feedback Availability**

#### Common assumptions

- Real-time communication
- Feedback is observed immediately upon taking an action
- Unrealistic!



## **Limited Feedback Availability**

### • Reality

- Delayed Feedback
  - Robot teleoperation: delay due to signal transmission
  - Clinical trails: effectiveness of treatments can only be determined at a deferred time frame



**Clinical trials** 



Robot teleoperation

## **Practical Requirement**

- Computationally efficient algorithms
- Statistically efficient algorithms
- Easy to deploy
- Resilient to delays
- Effective learning with least communication

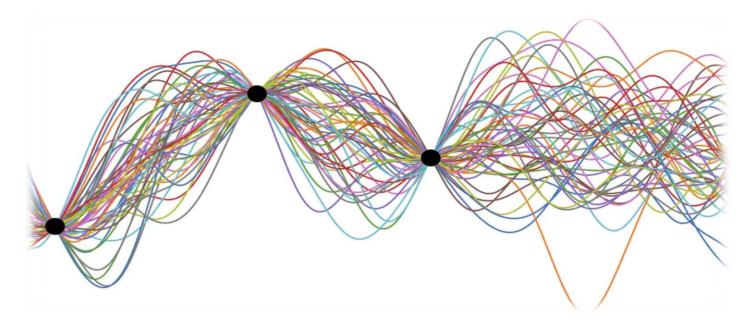
Computation efficiency problem: Can we design computationally efficient and practical algorithms?

Sample efficiency problem:

How to obtain statistically accurate algorithms with the least number of samples?

# **Posterior Sampling (PS)**

- A randomized Bayesian algorithm
- Extends Thompson sampling (TS) to RL
- Selects an action according to its posterior probability of being the best
- Bears greater robustness in the presence of delays



## Overview

### • TLDR

• Provide the first analysis for the class of PS algorithms to handle delayed feedback in RL

#### Contributions

- Introduce two novel value-based algorithms for linear MDPs under unknown stochastic delayed feedback
  - Delayed Posterior Sampling Value Iteration (Delayed-PSVI)
  - Delayed Langevin Posterior Sampling Value Iteration (Delayed-LPSVI)
  - Both algorithms achieve a high-probability worst-case regret of  $O(\sqrt{d^3H^3T} + d^2H^2\mathbb{E}[\tau])$
  - Delayed-LPSVI reduces the computational complexity of Delayed-PSVI from  $\tilde{O}(d^3HK)$  to  $\tilde{O}(dHK)$

# Comparison

### Contributions

- Regret bounds in linear bandits and episodic MDPs under stochastic delay
- Our algorithms
  - Achieve the optimal dependence on the parameters d and T under the class of PS algorithms
  - Recover the best-available frequentist regret as in non-delayed settings

| Algorithms            | Setting          | Exploration | Worst-case Regret                                                    | Computation                 |  |
|-----------------------|------------------|-------------|----------------------------------------------------------------------|-----------------------------|--|
| [28]                  | Linear Bandits   | UCB         | $\widetilde{O}(d\sqrt{T} + d^{3/2}\mathbb{E}[\tau])$                 | Confidence set optimization |  |
| [29]                  | Tabular MDPs     | UCB         | $\widetilde{O}(\sqrt{SAH^3T} + S^2AH^3\mathbb{E}[\tau])$             | Active update               |  |
| [68]                  | Linear MDPs      | UCB         | $\widetilde{O}(\sqrt{d^3H^3T} + dH^2\mathbb{E}[\tau])$               | Multi-batch reduction       |  |
| [40]                  | Adversarial MDPs | UCB         | $\widetilde{O}(H^2S\sqrt{AK} + H^{3/2}\sqrt{S\sum_{k=1}^{K}\tau_k})$ | Confidence set optimization |  |
| Delayed-PSVI (Thm 1)  | Linear MDPs      | PS          | $\widetilde{O}(\sqrt{d^3H^3T} + d^2H^2\mathbb{E}[\tau])$             | $O((d^3 + Md)HK)$           |  |
| Delayed-LPSVI (Thm 2) | Linear MDPs      | PS          | $\widetilde{O}(\sqrt{d^3H^3T} + d^2H^2\mathbb{E}[\tau])$             | O((N+d)MHK)                 |  |
| Delayed-PSLB (Cor 2)  | Linear Bandits   | PS          | $\widetilde{O}(\sqrt{d^3T} + d^2\mathbb{E}[\tau])$                   | O((N+d)MK)                  |  |
| UCB Lower bound [27]  | Linear MDPs      | UCB         | $\Omega(dH\sqrt{T})$                                                 |                             |  |
| PS Lower bound [24]   | Linear Bandits   | PS          | $\Omega(\sqrt{d^3T})$                                                |                             |  |

## **RL with Linear Function Approximation**

- Finite-horizon episodic setting, time-inhomogeneous
- Both the transition dynamics *P* and reward function are linear in the feature map
- Action-value functions are always linear in the feature map

**Definition 1** (Linear MDPs [66, 35]). Suppose there exists a known feature map  $\phi : S \times A \to \mathbb{R}^d$ that encodes each state-action pair into a d-dimensional feature vector. An MDP is a linear MDP<sup>3</sup> if for any time step  $h \in [H], \ \forall (s, a) \in S \times A$ , both the transition dynamics  $\mathbb{P}$  and reward function r are linear in  $\phi$ :

$$\mathbb{P}_h(\cdot|s,a) = \phi(s,a)^{\mathrm{T}} \mu_h(\cdot), \qquad r_h(s,a) = \phi(s,a)^{\mathrm{T}} \theta_h, \tag{1}$$

where  $\mu_h : S \to \mathbb{R}^d$  contains d unknown probability measures over S, and  $\theta_h \in \mathbb{R}^d$ . Furthermore, we assume that  $\forall (s, a) \in S \times A$ ,  $\|\phi(s, a)\| \leq 1$ , and  $\forall h \in [H], \|\theta_h\| \leq \sqrt{d}, \|\int_S d\mu_h(s')\| \leq \sqrt{d}$ , where  $\|\cdot\|$  denotes the Euclidean norm.

## **Performance Metric: worst-case Regret**

- The goal of the learner: maximize the cumulative rewards / minimize the worst-case regret
- Worst-case regret:

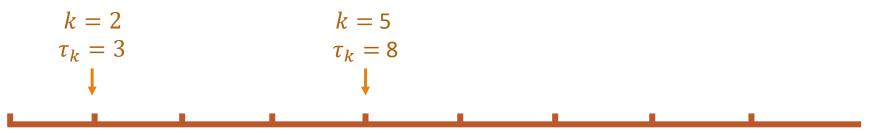
$$R(T) = \sum_{k=1}^{K} V_1^*(s_1^k) - V_1^{\pi_k}(s_1^k).$$

# **Episodic Delayed Feedback Model**

- Consider stochastic delays across episodes
- Trajectory of each episode is not immediately observable

**Definition 2** (Episodic Delayed Feedback). In each episode  $k \in [K]$ , the execution of a fixed policy  $\pi^k$  generates a trajectory  $\{s_h^k, a_h^k, r_h^k, s_{h+1}^k\}_{h \in [H]}$ . Such trajectory information is called the feedback of episode k. Let  $\tau_k$  represent the random delay between the rollout completion of episode k and the time point at which its feedback becomes observable.

- Feedback of episode k becomes observable at the onset of the  $(k + \tau_k)$ -th episode
- Assumption: sub-exponential delays



## **Noisy Value Iteration**

- Noisy value iteration via posterior sampling
- Consider a probability model  $p(x \mid \theta)$  with a *d*-dimensional latent variable  $\theta$ .
- The goal is to estimate the latent variable  $\theta$  by inferring its posterior:

$$p(\theta \mid x) = \frac{\lambda(\theta) \cdot p(x \mid \theta)}{p(x)}$$
Posterior
$$\propto \lambda(\theta) p(x \mid \theta)$$
Prior Likelihood

• Posterior is often computationally intractable:  $p(x) = \int \lambda(\theta) p(x \mid \theta) d\theta$ 

## **Delayed Posterior Sampling Value Iteration**

- Not to maintain an exact posterior, but to inject randomness for efficient exploration
- Parameterize Q-function with parameter  $w \in \mathbb{R}^d$ :

$$\widetilde{Q}(s,a) = \phi(s,a)^{\mathrm{T}}w$$
  
 $p(w|\mathcal{D}, \boldsymbol{y}) \propto \exp(-L(w, \boldsymbol{y}, \mathcal{D}))p_0(w)$ 

• Posteriors:

$$p(w_h^k | \mathcal{D}_h, \boldsymbol{y}_h) \propto \mathcal{N}\Big((\Omega_h^k)^{-1} \Phi_h \boldsymbol{y}_h^{\mathrm{T}}, (\Omega_h^k)^{-1}\Big)$$
$$\Omega_h^k := \Phi_h \Phi_h^{\mathrm{T}} + \lambda I_d \text{ and } \Phi_h = [\phi(s_h^1, a_h^1), \phi(s_h^2, a_h^2), \dots, \phi(s_h^{k-1}, a_h^{k-1})]$$

#### • Approximates the solution of Bellman optimality equation via the least-square ridge regression

$$\widehat{w}_h^k = \operatorname{argmin}_w \sum_{\tau=1}^{k-1} (\phi(s_h^{\tau}, a_h^{\tau})^{\mathrm{T}} w - (r + \max \bar{Q}_h^k))^2 + \lambda I_d$$

## **Delayed Posterior Sampling Value Iteration**

Algorithm 1: Delayed Posterior Sampling Value Iteration (Delayed-PSVI)

**Input:** priors  $p_0(w_h^k) \leftarrow \mathcal{N}(0, \lambda I)$ , scaling factor  $\nu$ , multi-round parameter M, hyper parameters  $\lambda$ and  $\sigma^2$ . 1 Initialization:  $\forall k, h, \widetilde{Q}_{H+1}^k(\cdot, \cdot), \widetilde{V}_{H+1}(\cdot, \cdot), \widetilde{V}_h(\cdot, \cdot) \leftarrow 0, \mathcal{D}_h \leftarrow \emptyset.$ **2** for episode  $k = 1, \ldots, K$  do Sample initial state  $s_1^k$ 3 for time step  $h = H, \ldots, 1$  do 4  $y_h \leftarrow [y_h^1, \dots, y_h^{k-1}], \text{ with } y_h^\tau \leftarrow \mathbb{1}_{\tau,k-1} \cdot [r_h^\tau + \widetilde{V}_{h+1}(s_{h+1}^\tau)]$ 5  $\Phi_h \leftarrow [\phi^1, \phi^2, \dots, \phi^{k-1}]$  with  $\phi^{\tau} = \mathbb{1}_{\tau, k-1} \cdot \phi(s_h^{\tau}, a_h^{\tau})$ 6 Noisy value iteration  $\Omega_h^k \leftarrow \sigma^{-2} \Phi_h \Phi_h^{\mathrm{T}} + \lambda I, \, \widehat{w}_h^k \leftarrow \sigma^{-2} (\Omega_h^k)^{-1} \Phi_h y_h^{\mathrm{T}}$ 7  $p(w_h^k \mid \mathcal{D}_h, \boldsymbol{y_h}) \leftarrow \mathcal{N}(\widehat{w}_h^k, \nu^2 \cdot (\Omega_h^k)^{-1})$ 8 for  $m = 1, \ldots, M$  do 9 Sample  $\widetilde{w}_{h}^{k,m} \sim p(w_{h}^{k} \mid \mathcal{D}_{h}, \boldsymbol{y}_{h})$ 10  $\widetilde{Q}_h^{k,m}(\cdot,\cdot) \leftarrow \phi(\cdot,\cdot)^{\mathrm{T}} \widetilde{w}_h^{k,m}$ **Optimism: multi-round sampling** 11 Update  $\widetilde{Q}_{h}^{k}(\cdot, \cdot) \leftarrow \max_{m} \widetilde{Q}_{h}^{k,m}$ 12  $\widetilde{V}_h(\cdot, \cdot) \leftarrow \max_a \min\{\widetilde{Q}_h^k(\cdot, a), H - h + 1\}$ 13 Update  $\pi_h^k(\cdot) \leftarrow \operatorname{argmax}_{a \in \mathcal{A}} \min\{\widetilde{Q}_h^k(\cdot, a), H - h + 1\}$ 14 for time step  $h = 1, \ldots, H$  do 15 Choose action  $a_h^k = \pi_h^k(s_h^k)$ 16 Collect trajectory observations  $\mathcal{D}_h \leftarrow \mathcal{D}_h \cup \{(s_h^k, a_h^k, r_h^k, s_{h+1}^k)\}$ 17 /\* Feedback generated in episode k cannot be immediately observed in the presence of delay \*/

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation." NeurIPS 2023

## **Performance Guarantee**

- Worst-case regret guarantee
- Recover the best-available frequentist regret  $O(\sqrt{d^3H^3T})$  as in non-delayed linear MDPs
- Computational complexity:  $O((d^3 + M d)HK)$

**Theorem 1.** Suppose delays satisfy Assumption 1. In any episodic linear MDP with time horizon T = KH, where K is the total number of episodes, for any  $0 < \delta < 1$ , let  $\lambda = 1$ ,  $\sigma^2 = 1$ ,  $M = \log(4HK/\delta)/\log(64/63)$  and  $\nu = C_{\delta/4} \approx \tilde{O}(\sqrt{dMH^2})$  ( $C_{\delta/4}$  in Lemma B.10). Then with probability at least  $1 - \delta$ , there exists some absolute constants c, c', c'' > 0 such that the regret of Delayed-PSVI (Algorithm 1) satisfies:

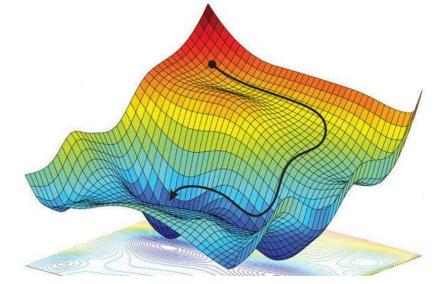
 $R(T) \leq \frac{c\sqrt{d^3H^3T\iota}}{c\sqrt{d^3H^3T\iota}} + c'd^2H^2\mathbb{E}[\tau]\iota + c''\iota.$ 

*Here*  $\iota$  *is a Polylog term of*  $H, d, K, \delta$ *.* 

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation." NeurIPS 2023

## **Estimation of Complex Probabilistic Model**

- Posteriors are often computationally intractable
- Delayed-PSVI is not sufficiently efficient in high-dimensional settings
- Resort to approximate Bayesian inference methods



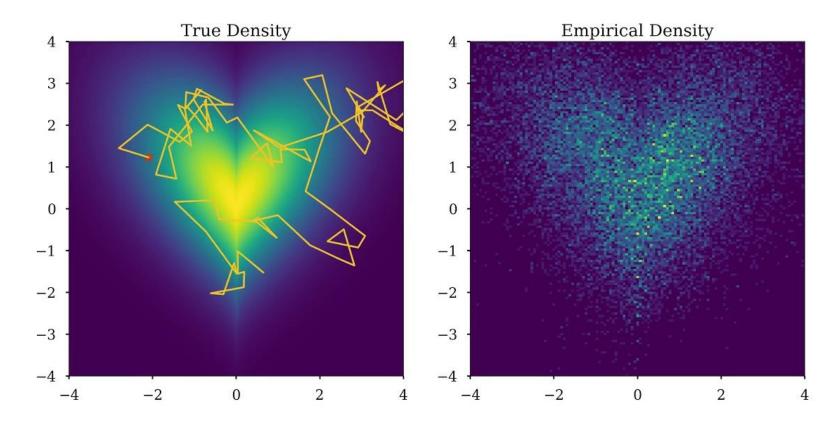
How to sample from unknown non-conjugate distributions?

## **Approximate Bayesian Inference**

- Bootstrapping
- Ensemble Methods
- Variational Inference (VI)
- Markov Chain Monte Carlo (MCMC)

## Langevin Monte Carlo

• A class of gradient-based MCMC methods, tailored for large-scale online learning



## Langevin Monte Carlo

- Efficient in large-scale online learning
- Perform gradient optimization over data D
- Euler discretization of the Langevin stochastic differential equation (SDE):

$$d\boldsymbol{w}(t) = -\nabla L(\boldsymbol{w}(t))dt + \sqrt{2\beta^{-1}} d\boldsymbol{B}(t)$$

• Update rule: noisy gradient update

$$\theta_t \leftarrow \theta_{t-1} - \eta \nabla U(\theta_{t-1}) + \sqrt{2\eta \gamma} \varepsilon_t, \qquad \text{where } \varepsilon_t \sim \mathcal{N}(0, I_d)$$

# **Delayed Langevin PSVI**

Noisy value iteration via Langevin posterior sampling

Algorithm 2: Delayed Langevin Posterior Sampling Value Iteration (Delayed-LPSVI) **Input:**  $w_0, \eta_k, N_k, \gamma$  and rounds  $M, \lambda$ . Delayed loss  $L_h^k$  as (5). 1 Initialization:  $\forall k \in [K], h \in [H], \widetilde{Q}_{H+1}^k(\cdot, \cdot) \leftarrow 0, \widetilde{V}_{H+1}^k(\cdot, \cdot) \leftarrow 0, \widetilde{V}_h^0(\cdot, \cdot) \leftarrow 0$ 2 for episode  $k = 1, \ldots, K$  do Sample initial state  $s_1^k$ 3 for time step  $h = H, \ldots, 1$  do for  $m = 1, \ldots, M$  do 5  $\widetilde{W}_{h}^{k,m} \leftarrow LMC(L_{h}^{k}, w_{0}, \eta_{k}, N_{k}, \gamma) \qquad //LMC \text{ is given by Algorithm} \\ \widetilde{Q}_{h}^{k,m}(\cdot, \cdot) \leftarrow \phi(\cdot)^{\mathrm{T}} \widetilde{W}_{h}^{k,m} \qquad \text{Optimism: multi-round sampling}$ *//LMC* is given by Algorithm 3 6 7 Update  $\widetilde{Q}_{h}^{k}(\cdot, \cdot) \leftarrow \max_{m} \widetilde{Q}_{h}^{k,m}$ 8  $\widetilde{V}_{h}^{k}(\cdot, \cdot) \leftarrow \max_{a} \min\{\widetilde{Q}_{h}^{k}(\cdot, a), H - h + 1\}$ 9 Update policy  $\pi_h^k(\cdot) \leftarrow \operatorname{argmax}_{a \in \mathcal{A}} \min\{\widehat{Q}_h^k(\cdot, a), H - h + 1\}$ Algorithm 3: Langevin Monte Carlo 10  $LMC(\mathcal{L}, w_0, \eta, N, \gamma)$ for time step  $h = 1, \ldots, H$  do 11 1 for  $t = 1 \dots N - 1$  do Choose action  $a_h^k = \pi_h^k(s_h^k)$ 12 Draw  $\epsilon_t \sim \mathcal{N}(0, I_d)$ Collect trajectory observations  $\mathcal{D}_h \leftarrow \mathcal{D}_h \cup \{(s_h^k, a_h^k, r_h^k, s_{h+1}^k)\}$ 13  $w_t \leftarrow w_{t-1} - \eta \nabla \mathcal{L}(w_{t-1}) + \sqrt{2\eta \gamma} \epsilon_t$ /\* Feedback generated in episode k cannot be immediately observed in the presence of delay \*/ 4 Output:  $w_N$ 

## **Worst-case Regret Guarantee**

- Worst-case regret guarantee
- Recover the best-available frequentist regret  $O(\sqrt{d^3H^3T})$  as in non-delayed linear MDPs
- Computational complexity: O((N + d)HK)

**Theorem 2.** Suppose delays satisfy Assumption 1. In any episodic linear MDP with time horizon T = KH, where K is the total number of episodes and H is the fixed episode length, for any  $0 < \delta < 1$ , let  $\lambda = 1$ ,  $N_k = \max\{\log(\frac{32H^2(K+\lambda)dk}{\gamma\lambda} + 1)/[2\log(1/(1-\frac{1}{2\kappa_h}))], \frac{\log 2}{2\log(1/(1-\frac{1}{2\kappa_h}))}, \log(\frac{4HK^3}{\sqrt{\lambda/dK}})/\log(1/(1-\frac{1}{2\kappa_h}))\}, \eta_k = \frac{1}{4\lambda_{\max}(\Omega_h^k)}, \gamma = 16C_{\delta/4}^2 \approx \tilde{O}(dMH^2),$ 

 $w_0 = 0$  and  $M = \log(4HK/\delta)/\log(64/63)$ . Then with probability at least  $1 - \delta$ , there exists some absolute constants c, c', c'' > 0 such that the regret of Algorithm 2 satisfies:

 $R(T) \le c\sqrt{d^3 H^3 T \iota} + c' d^2 H^2 \mathbb{E}[\tau] \iota + c'' \iota.$ 

*Here*  $\iota$  *is a Polylog term of*  $H, d, K, \delta$  *and*  $C_{\delta}$  *is defined in Lemma* C.9.

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation." NeurIPS 2023

## Experiments

- Sub-exponential delays and long-tail delays:
  - Multinomial delay
  - Poisson delay
  - Long-tail Pareto delay

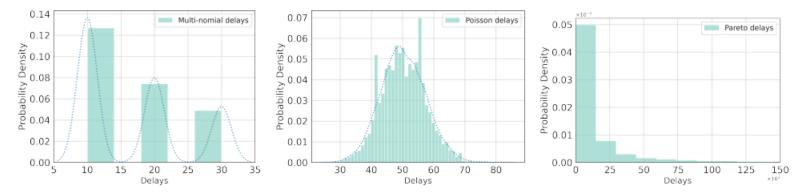


Figure 2: Empirical distributions of three types of delays. (a) Multinomial delays with delay categories  $\{10, 20, 30\}$ . (b) Poisson delays with rate  $\mathbb{E}[\tau] = 50$ . (c) Long-tail Pareto delays with shape 1.0, scale 500. The first two types of delays are well-behaved and decay exponentially fast, while pareto delays are heavy-tailed.

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation." NeurIPS 2023

## Experiments

#### Performance Comparison



Figure 1: Left:(a) Multinomial delay with delay categories  $\{10, 20, 30\}$ . (b) Poisson delay with rate  $\mathbb{E}[\tau] = 50$ . (c) Long-tail Pareto delay with shape 1.0, scale 500. Results are reported over 10 experiments. Delayed-PSVI and Delayed-LPSVI demonstrate robust performance under both well-behaved and long-tail delays.

|                                     | $\begin{array}{c} \text{Multinomial Delay} \\ (10, 20, 30) \end{array}$ | Poisson Delay<br>( $\mathbb{E}[\tau] = 50$ ) | Pareto Delay (Shape<br>1.0, Scale 500) |
|-------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|
| Delayed-PSVI ( $\sigma = 0.1$ )     | $11.53\pm0.76$                                                          | $11.48\pm0.81$                               | $11.53\pm0.74$                         |
| Delayed-LPSVI ( $c_{\eta} = 0.5$ )  | $11.56\pm0.48$                                                          | $11.37\pm0.48$                               | $10.98\pm0.40$                         |
| Delayed-UCBVI ( $c_{\beta} = 0.1$ ) | $10.61\pm0.76$                                                          | $10.54\pm0.81$                               | $7.20\pm0.38$                          |

Table 2: Average return achieved by Delayed-PSVI, Delayed-LPSVI and Delayed-UCBVI upon convergence under different delays. Environment setup: |S| = 2, |A| = 20, d = 10, H = 20. Optimal average return is  $V_1^*(s_1) = 11.96$ . Results are obtained over 10 experiments.

## Experiments

- Computational overhead
- Measured by number of episodes to converge

|                                     | $ \mathcal{S}  \mathcal{A}  = 20$ | $ \mathcal{S}  \mathcal{A}  = 40$ | $ \mathcal{S}  \mathcal{A}  = 100$ | $ \mathcal{S}  \mathcal{A}  = 200$ |
|-------------------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|
| Delayed-PSVI ( $\sigma = 0.3$ )     | 1418                              | 1290                              | 1669                               | 2633                               |
| Delayed-PSVI ( $\sigma = 0.2$ )     | 531                               | 1114                              | 1323                               | 826                                |
| Delayed-PSVI ( $\sigma = 0.1$ )     | 391                               | 571                               | 650                                | 709                                |
| Delayed-LPSVI ( $c_{\eta} = 0.5$ )  | 293                               | 246                               | 517                                | 566                                |
| Delayed-UCBVI ( $c_{\beta} = 0.1$ ) | 3205                              | 2713                              | 3351                               | 3694                               |

Table 3: Number of episodes for each method to achieve its highest expected return. Different synthetic environments are examined with varied |S| and |A|. Optimal average return is  $V_1^*(s_1) = 11.96$  for all environments (d = 10, H = 20). Results are obtained over 10 experiments with Poisson delays ( $\mathbb{E}[\tau] = 50$ ).

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation." NeurIPS 2023

## Conclusions

- Study posterior sampling with episodic delayed feedback in linear MDPs
- Introduce two novel value-based algorithms: Delayed-PSVI and Delayed-LPSVI
- Both algorithms achieve a high-probability worst-case regret of  $O(\sqrt{d^3H^3T} + d^2H^2\mathbb{E}[\tau])$
- By incorporating LMC for approximate sampling, Delayed-LPSVI reduces the computational cost by  $\tilde{O}(d^2)$  while maintaining the same order of regret
- Empirical evaluation demonstrates the effectiveness of our algorithms over UCB-based methods

# Thank you!