

MARS

Multimedia Analysis & Reasoning Lab

Dynamic Personalized Federated Learning with Adaptive Differential Privacy

Xiyuan Yang¹, Wenke Huang¹, Mang Ye¹ ¹School of Computer Science, Wuhan University, Wuhan, China

Paper: https://nips.cc/virtual/2023/poster/71639 Project Page: https://github.com/xiyuanyang45/DynamicPFL

Introduction

Personalized Federated Learning (PFL)

PFL:

learn **local** knowledge ٠

Introduction

Differential Privacy in PFL

Privacy Leakage Issue

User-Level Differential Privacy:

Clipping:

$$\Delta w \leftarrow \frac{\Delta w}{\max(1, \frac{||\Delta w||_2}{C})}$$

Introducing randomness into the training algorithm to protect privacy

Adding Noise:

 $\Delta w \leftarrow \Delta w + \mathcal{N}(0, C^2 \sigma^2 / |m^t|)$

Clip client updates in L2-norm, limiting the contribution of single participant

C: Clipping Bound σ :noise scale *m*: number of clients

Problem 1

Problem 2

Model Convergence Difficulty

Methodology

Dynamic Personalization:

We design an **adaptive** gradient adjustment term

For **u**, we limit the update norm to preserve informative parameters For **v**, we make it closer to C, thus mitigating the impact of clipping

Personalization:

v: Shared Parametersu: Personalized Parameters

Comparison with Stat-Of-The-Art Methods										
Mat	thoda	FEMNIST					SVHN			
		$\epsilon = 2$	$\epsilon = 4$	$\epsilon = 8$	$\epsilon = 1$	6	$\epsilon = 2$	$\epsilon = 4$	$\epsilon = 6$	$\epsilon = 8$
DP-FedAvg [12]		71.92	72.80	73.26	75.0	2	53.91	54.76	56.33	57.65
BLUR+LUS [8]		72.80	74.23	74.58	75.1	6	53.76	57.52	56.90	58.57
PPSGD [3]		68.20	69.60	71.03	71.9	3	55.89	56.15	56.74	59.37
DP-FedSAM [38]		73.13	73.94	74.54	- 74.6	6	53.04	52.84	54.03	56.08
FedDPA(Ours)		74.46 ^{1.33}	77.27 ^3.0 4	77.42 ↑2	.84 76.99 ↑	1.83	58.78 ^{2.89}	62.63 \cap 5.11	63.66 ↑6.76	64.57 <u><u></u></u> <u></u> <u></u> <u></u> 5.29
Ablati	on St	Smalle udy	er <i>e</i> seprese	ents Stronger Privacy Protection Accuracy Curve Ours 70						
Components	Components Accuracy or							Participation		Vin A.
DFP AC	ϵ	$=2$ ϵ	$=4$ $\epsilon=8$		$\epsilon = 16$		65 -			
\checkmark \checkmark	71 72 74.4 0	1.92 7 2.18 7 6↑ 2.28 77. 2	72.80 74.56 27 ↑2 . 71 7′	73.26 74.38 7.42 ↑ 2.93	75.02 75.33 76.99 ↑ 1.66		60 - 55 -			

- 1. In this paper, we delve into the challenges of inflexible personalization and convergence difficulties under differential privacy in personalized federated learning
- 2. We introduce FedDPA with two innovative components, Dynamic Fisher Personalization (DFP) and Adaptive Constraint (AC), that utilize layer-wise Fisher information to dynamically personalize and adaptively constrain parameters, effectively addressing the challenges
- 3. The efficacy of our proposed methods has been thoroughly validated has been validated against many state-of-the-art methods on various datasets

Thanks for watching!

Xiyuan Yang