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Definition of VC-dimension1 of function sets

Definition (VC-dimension)

Let H denote a class of functions from X to {0, 1}. For any non-negative integer m, define
the growth function of H as

ΠH(m) := max
x1,x2,...,xm∈X

|{(h(x1), h(x2), . . . , h(xm)) : h ∈ H}| .

The Vapnik–Chervonenkis dimension (VC-dimension) of H, denoted by VCdim(H), is the
largest m such that ΠH(m) = 2m. For a class G of real-valued functions, define
VCdim(G) := VCdim(sgn(G)), where sgn(G) := {sgn(f ) : f ∈ G} and sgn(x) = 1[x > 0].

1A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapnik-Chervonenkis
dimension. Journal of the ACM (JACM), 36(4):929–965, 1989.
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Example of VC-dimension

The VC-dimension of linear function in R2 is 3 based on Radon’s theorem.

Figure: The VC-dimension of linear functions in two-dimension spaces is 3.
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Definition of pseudo-dimension2 of function sets

Definition (pseudo-dimension)

Let F be a class of functions from X to R. The pseudo-dimension of F , denoted by Pdim(F),
is the largest integer m for which there exists (x1, x2, . . . , xm, y1, y2, . . . , ym) ∈ Xm × Rm such
that for any (b1, . . . , bm) ∈ {0, 1}m there is f ∈ F such that ∀i : f (xi ) > yi ⇐⇒ bi = 1.

2D. Pollard. Empirical processes: theory and applications. Ims, 1990
5 / 32



Applications about main results

In the work 3, they prove that

VCdim(Φ) ∼ O(N2L2 log2 L log2N).

This result has found wide applications in the error analysis of DNN approximations.

3P. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian. Nearly-tight VC-dimension and pseudodimension bounds
for piecewise linear neural networks. The Journal of Machine Learning Research, 20(1): 2285–2301, 2019
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Error analysis

Learn f (x) defined on (0, 1)d with ∥f ∥Wn,∞((0,1)d) ≤ 1 from a finite set of data samples

{(xi , f (xi ))}Mi=1. Denote

θclassD := arg inf
θ
RD(θ) := arg inf

θ

∫
(0,1)d

|f (x)− ϕ(x ;θ)|2 dx , (1)

θclassS := arg inf
θ
RS(θ) := arg inf

θ

1

M

M∑
i=1

|f (xi )− ϕ(xi ;θ)|2. (2)
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Error analysis

The overall inference error is ERD(θ
class
S ), which can be divided into two parts:

ERD(θ
class
S ) =RD(θ

class
D ) + ERS(θ

class
D )−RD(θ

class
D )

+ ERS(θ
class
S )− ERS(θ

class
D ) + ERD(θ

class
S )− ERS(θ

class
S )

≤ RD(θ
class
D )︸ ︷︷ ︸

approximation error

+ERS(θ
class
D )−RD(θ

class
D ) + ERD(θ

class
S )− ERS(θ

class
S ),︸ ︷︷ ︸

generalization error

(3)

where the last inequality is due to ERS(θ
class
S ) ≤ ERS(θ

class
D ) by the definition of θclassS .

For complex function sets used in approximation, the approximation error may be small, but
the generalization error can become large.
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Lower bound of the approximation rate given by VC-dimension4

Proposition

Given any s, d ∈ N+, there exists a (small) positive constant Cs,d determined by s and d such
that the following holds: For any ε > 0 and a function set F with all elements defined on
[0, 1]d , if VCDim(F ) ≥ 1 and

inf
ϕ∈F

∥ϕ− f ∥L∞([0,1]d) ≤ ε for any f ∈ C s
u

(
[0, 1]d

)
then VCDim(F ) ≥ Cs,dε

−d/s .

4J. Lu, Z. Shen, H. Yang, and S. Zhang. Deep network approximation for smooth functions. SIAM Journal
on Mathematical Analysis, 53(5):5465–5506, 2021.
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Upper bound of the generalization error given by

pseudo-dimension

According to Rademacher complexity and uniform covering number, we can derive that

Generalization error ≤ C

(
Pdim(Φ)

M

) 1
2

√
log

(
2eM

Pdim(Φ)

)
,

where Φ :=
{
ϕ : ϕ is a σ1-NN in Rd with width≤ N and depth≤ L

}
.
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Sobolev training

While the VC-dimension and pseudo-dimension have been extensively studied, they are not
sufficient for analyzing the errors of DNNs in Sobolev training, as the loss functions used in
such training contain derivatives of the DNNs. For example, For example, to solve the
following PDEs {

−∆u = f in Ω,
∂u
∂ν = 0 on ∂Ω,

(4)

using the Deep Ritz method, the loss function can be written as

ED(θ) :=
1

2

∫
Ω
|∇ϕ(x ;θ)|2dx +

1

2

(∫
Ω
ϕ(x ;θ)dx

)2

−
∫
Ω
f ϕ(x ;θ)dx ,

where θ represents all the parameters in the neural network. Denote Ω as (0, 1)d . Proposition
1 in proves that the loss function ED(θ) is equivalent to ∥ϕ(x ;θ)− u∗(x)∥H1((0,1)d ), where

u∗(x) is the exact solution of the PDEs in equation (4). Thus, the Sobolev norm H1((0, 1)d)
can measure the loss function.
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Generalization error of loss functions defined by Sobolev norms

Denote

θD := arg inf
θ
RD(θ) := arg inf

θ

∫
(0,1)d

|∇(f (x)− ϕ(x ;θ))|2 + |f (x)− ϕ(x ;θ)|2 dx , (5)

θS := arg inf
θ
RS(θ) := arg inf

θ

1

M

M∑
i=1

[
|∇(f (xi )− ϕ(xi ;θ))|2 + |f (xi )− ϕ(xi ;θ)|2

]
. (6)
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Generalization error of loss functions defined by Sobolev norms

The overall inference error is ERD(θS), which can be divided into two parts:

ERD(θS) =RD(θD) + ERS(θD)−RD(θD) + ERS(θS)− ERS(θD) + ERD(θS)− ERS(θS)

≤ RD(θD)︸ ︷︷ ︸
approximation error

+ERS(θD)−RD(θD) + ERD(θS)− ERS(θS),︸ ︷︷ ︸
generalization error

(7)

where the last inequality is due to ERS(θS) ≤ ERS(θD) by the definition of θS .
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Main results: Optimal bound of VC-dimension

Theorem

(i): For any N, L, d ∈ N+, there exists a constant C̄ independent with N, L such that

VCdim(DΦ) ≤ C̄N2L2 log2 L log2N, (8)

for DΦ := {ψ = Diϕ : ϕ ∈ Φ, i = 1, 2, . . . , d}, where
Φ :=

{
ϕ : ϕ is a σ1-NN in Rd with width≤ N and depth≤ L

}
, and Di is the weak derivative

in the i-th variable.
(ii):For any d ∈ N+, C , J0, ε > 0, there exists N, L ∈ N with NL ≥ J0 such that

VCdim(DΦ) > CN2−εL2−ε. (9)
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Main results: Optimal bound of and Pseudo-dimension

Theorem

(i): For any N, L, d ∈ N+, there exists a constant Ĉ independent with N, L such that

Pdim(DΦ) ≤ ĈN2L2 log2 L log2N. (10)

(ii):For any d ∈ N+, C , J0, ε > 0, there exists N, L ∈ N with NL ≥ J0 such that

Pdim(DΦ) > CN2−εL2−ε. (11)
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Optimallity of DNN approximation in Sobolev Spaces

By utilizing Theorem 1, we prove that our DNN approximation rate for approximating
functions in Sobolev spaces Wn,∞((0, 1)d) using Sobolev norms in W1,∞((0, 1)d) is nearly
optimal:

Theorem

For any f ∈ Wn,∞((0, 1)d) with n ≥ 2 and ∥f ∥Wn,∞((0,1)d ) ≤ 1, any N, L ∈ N+, there is a

σ1-NN ϕ with the width (34 + d)2dnd+1(N + 1) log2(8N) and depth 56d2n2(L+ 1) log2(4L)
such that

∥f (x)− ϕ(x)∥W1,∞((0,1)d ) ≤ C9(n, d)N
−2(n−1)/dL−2(n−1)/d ,

where C9 is the constant independent with N, L.
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Optimallity of DNN approximation in Sobolev Spaces

Theorem

Given any ρ,C1,C2,C3, J0 > 0 and n, d ∈ N+, there exist N, L ∈ N with NL ≥ J0 and f with
∥f ∥Wn,∞(((0,1)d )) ≤ 1, satisfying for any σ1-NN ϕ with the width smaller than C1N logN and

depth smaller than C2L log L, we have

|ϕ− f |W1,∞((0,1)d ) > C3L
−2(n−1)/d−ρN−2(n−1)/d−ρ. (12)

In other words, the approximation rate of O(N−2(n−1)/d−ρK−2(n−1)/d−ρ) cannot be achieved
asymptotically when ReLU σ1-NNs with width O(N logN) and depth O(L log L) to

approximate functions in Fn,d :=
{
f ∈ Wn,∞((0, 1)d) : ∥f ∥Wn,∞((0,1)d) ≤ 1

}
. The proof of

Theorem 4 is based on the estimation of the VC-dimension of DNN derivatives, which is
provided in Theorem 1.
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Generalization error of loss functions defined by Sobolev norms

Theorem

For any N, L, d ,B,C1,C2, if ϕ(x ;θD), ϕ(x ;θS) ∈ Φ̃, we will have that there are constants
C5 = C5(B, d ,C1,C2) and J = J(d ,N, L,C1,C2) such that for any M ≥ J, we have

ERS(θD)−RD(θD) + ERD(θS)− ERS(θS) ≤ C5
NL(log2 L log2N)

1
2

√
M

logM. (13)

where Φ̃ := {ϕ : ϕ with the width ≤ C1N logN and depth ≤ C2L log L, ∥ϕ∥W1,∞((0,1)d ) ≤ B},
and RS ,RD ,θS ,θD are defined in Eqs. (5,6).
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Recent Works

Nearly Optimal Approximation Rate in Sobolev Spaces including Higher-order
Derivatives

NC ,L :={ψ(x) = ψ2 ◦ψ1(x) : ψ2 is a ReLUk -NN with depth L2, each component of ψ1 is a ReLU-NN with depth L1 , L1 + L2 ≤ L, L2 ≤ C log L.}
(14)

We refer to the elements in NC ,L as deep super ReLU networks (DSRNs).

Theorem

For any f ∈ Wn,p((0, 1)d) with ∥f ∥Wn,p((0,1)d ) ≤ 1 for m ∈ N with m ≥ 2 and 1 ≤ p ≤ +∞,

any N, L ∈ N+ with N log2 L+ 2⌊log2 N⌋ ≥ max{d , n} and L ≥ N,m < n, there is a DSRN
γ(x) in Nη1,η2L log2 L with the width η3N log2N such that

∥f (x)− γ(x)∥Wm,p((0,1)d ) ≤ 2d+7C11(n, d)N
−2(n−m)/dL−2(n−m)/d ,

where ηi ,C11 are the constants independent with N, L.
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Proof of the approximation rate

The proof of Theorem 3 can be outlined in five parts:
(i): First of all, define a sequence of subsets of Ω:

Definition

Given K , d ∈ N+, and for any m = (m1,m2, . . . ,md) ∈ {1, 2}d , we define Ωm :=
∏d

j=1Ωmj ,

where Ω1 :=
⋃K−1

i=0

[
i
K ,

i
K + 3

4K

]
, Ω2 :=

⋃K
i=0

[
i
K − 1

2K ,
i
K + 1

4K

]
∩ [0, 1].

Then we define a partition of unity {gm}m∈{1,2}d on (0, 1)d with supp gm ∩ (0, 1)d ⊂ Ωm for

each m ∈ {1, 2}d :
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g1 and g2

Definition

Given K , d ∈ N+, we define

g1(x) :=


1, x ∈

[
i
K + 1

4K ,
i
K + 1

2K

]
0, x ∈

[
i
K + 3

4K ,
i+1
K

]
4K

(
x − i

K

)
, x ∈

[
i
K ,

i
K + 1

4K

]
−4K

(
x − i

K − 3
4K

)
, x ∈

[
i
K + 1

2K ,
i
K + 3

4K

] , g2(x) := g1

(
x +

1

2K

)
, (15)

for i ∈ Z. For any m = (m1,m2, . . . ,md) ∈ {1, 2}d , define
gm(x) =

∏d
j=1 gmj (xj), x = (x1, x2, . . . , xd).
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g1 and g2

Figure: The schematic diagram of gi for i = 1, 2
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Proof of the approximation rate

(ii): Then we use the following proposition to approximate {gm}m∈{1,2}d by σ1-NNs and
construct a sequence of σ1-NNs {ϕm}m∈{1,2}d :

Proposition

Given any N, L, n ∈ N+ for K = ⌊N1/d⌋2⌊L2/d⌋, then for any m = (m1,m2, . . . ,md) ∈ {1, 2}d ,
there is a σ1-NN with the width smaller than (9 + d)(N + 1) + d − 1 and depth smaller than

15d(d − 1)nL such as ∥ϕm(x)− gm(x)∥W1,∞((0,1)d ) ≤ 50d
5
2 (N + 1)−4dnL.

23 / 32



Proof of the approximation rate

(iii): For each Ωm ⊂ [0, 1]d , where m ∈ {1, 2}d , we find a function fK ,m satisfying

∥f − fK ,m∥W1,∞(Ωm) ≤ C1(n, d)K
−(n−1),

∥f − fK ,m∥L∞(Ωm) ≤ C1(n, d)K
−n, (16)

where C1 is a constant independent of K . Moreover, each fK ,m can be expressed as
fK ,m =

∑
|α|≤n−1 gf ,α,m(x)xα, where gf ,α,m(x) is a piecewise constant function on Ωm. The

proof of this result is based on the Bramble-Hilbert Lemma5.

5S. Brenner, L. Scott, and L. Scott. The mathematical theory of finite element methods, volume 3.
Springer, 2008
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Proof of the approximation rate

(iv): Follow the work of Lu, etc. We obtain a neural network ψm with width O(N logN) and
depth O(L log L) such that

∥fK ,m − ψm(x)∥W1,∞(Ωm) ≤ C5(n, d)N
−2(n−1)/dL−2(n−1)/d

∥fK ,m − ψm(x)∥L∞(Ωm) ≤ C5(n, d)N
−2n/dL−2n/d , (17)

where C5 is a constant independent of N and L.
By combining (iii) and (iv) and setting K = ⌊N1/d⌋2⌊L2/d⌋, we obtain that for each
m ∈ {1, 2}d , there exists a neural network ψm with width O(N logN) and depth O(L log L)
such that

∥f (x)− ψm(x)∥W1,∞(Ωm) ≤ C6(n, d)N
−2(n−1)/dL−2(n−1)/d

∥f (x)− ψm(x)∥L∞(Ωm) ≤ C6(n, d)N
−2n/dL−2n/d . (18)
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Proof of the approximation rate

(v): The final step is to combine the sequences {ϕm}m∈{1,2}d and {ψm}m∈{1,2}d to construct

a network that can approximate f over the entire space [0, 1]d . We define the sequence
{ϕm}m∈{1,2}d because ψm may not accurately approximate f on [0, 1]d\Ωm. The purpose of
ϕm is to remove this portion of the domain and allow other networks to approximate f on
[0, 1]d\Ωm.
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Proof of the bounds of VC-dimension of DNN derivatives

In the proof of Theorem 1, we use the following lemmas:

Lemma

Suppose W ≤ M and let P1, . . . ,PM be polynomials of degree at most D in W variables.
Define K :=

∣∣{(sgn(P1(a)), . . . , sgn(PM(a))) : a ∈ RW }
∣∣, then we have K ≤ 2(2eMD/W )W .

Lemma

Suppose that 2m ≤ 2t(mr/w)w for some r ≥ 16 and m ≥ w ≥ t ≥ 0. Then,
m ≤ t + w log2(2r log2 r).
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Sketch of Proof

An element in Φ can be represented as
ϕ = WL+1σ1(WLσ1(. . . σ1(W1x + b1) . . .) + bL) + bL+1. Therefore, an element in DΦ can be
represented as

ψ(x) = Diϕ(x) =WL+1σ0(WLσ1(. . . σ1(W1x + b1) . . .) + bL)

· WLσ0(. . . σ1(W1x + b1) . . .) . . .W2σ0(W1x + b1)(W1)i , (19)

where (W )i is i-th column of W .
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Sketch of Proof

Let x ∈ Rd be an input and θ ∈ RW be a parameter vector in ψ. We denote the output of ψ
with input x and parameter vector θ as f (x ,θ). For fixed x1, x2, . . . , xm in Rd , we aim to
bound

K :=
∣∣∣{(sgn(f (x1,θ)), . . . , sgn(f (xm,θ))) : θ ∈ RW }

∣∣∣ . (20)

For any partition S = {P1,P2, . . . ,PT} of the parameter domain RW , we have
K ≤

∑T
i=1 |{(sgn(f (x1,θ)), . . . , sgn(f (xm,θ))) : θ ∈ Pi}|.

We choose the partition such that within each region Pi , the functions f (xj , ·) are all fixed
polynomials of bounded degree. This allows us to bound each term in the sum using Lemma 1.
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Sketch of Proof

We define a sequence of sets of functions {Fj}Lj=0 with respect to parameters θ ∈ RW :

F0 := {(W1)i ,W1x + b1}
F1 := {(W1)i ,W2σ0(W1x + b1),W2σ1(W1x + b1) + b2}
F2 := {(W1)i ,W2σ0(W1x + b1),

W3σ0(W2σ1(W1x + b1) + b2),W3σ1(W2σ1(W1x + b1) + b2) + b3}
...

FL := {(W1)i ,W2σ0(W1x + b1), . . . ,WL+1σ0(WLσ1(. . . σ1(W1x + b1) . . .) + bL)}. (21)
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Sketch of Proof

The partition of RW is constructed layer by layer through successive refinements denoted by
S0,S1, . . . ,SL. These refinements possess the following properties:

1. We have |S0| = 1, and for each n = 1, . . . , L, we have |Sn|
|Sn−1| ≤ 2

(
2emnNk∑n

i=1 Wi

)∑n
i=1 Wi

.

2. For each n = 0, . . . , L− 1, each element S of Sn, when θ varies in S , the output of each
term in Fn is a fixed polynomial function in

∑n
i=1Wi variables of θ, with a total degree no

more than n + 1.
3. For each element S of SL, when θ varies in S , the h-th term in FL for h ∈ {1, 2, . . . , L+ 1}
is a fixed polynomial function in Wh variables of θ, with a total degree no more than 1.
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Thanks for Listening!
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