

NeurIPS 2023

Dataset Diffusion: Diffusion-based Synthetic Dataset Generation for Pixel-Level Semantic Segmentation

Quang Nguyen

Truong Vu

Anh Tran

Khoi Nguyen

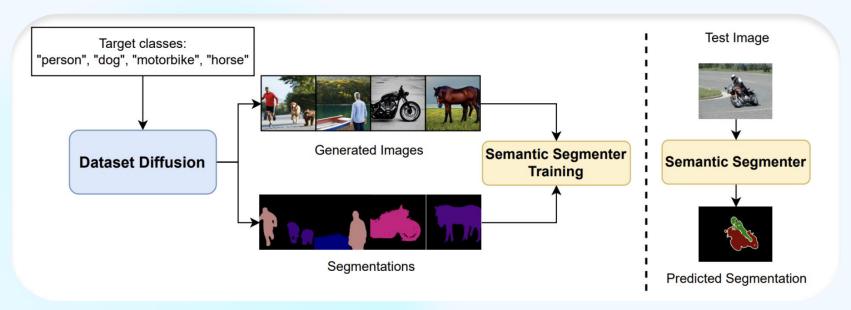
Motivations

Human annotations are expensive

The process of manually annotating can be time-consuming and expensive.

Leveraging pretrained diffusion models

Pretrained text-to-image Stable Diffusion model is pretrained on billions of images and ready to use for generating segmentation along with images



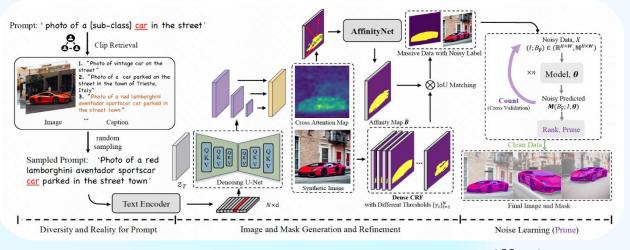
Explaining the results of diffusion models

Use segmentation of each selected words to verify whether the generated images are faithful to the given text prompts

Problem Statement

Challenges:

- Stable Diffusion is not trained on pixel-level annotation
- Stable Diffusion is only designed for generating images!



Prior Work

Synthesis Stage

Exploitation Stage

N

DiffusionSeg $A_c \in \mathbb{R}^{h \times w}$ Noise ZT~ confidence maps **Mask Generation** * Block A Class {bird} FEN Up sample Cross Attn Diffusion Self Attn cross-att Objectness Model $A_s \in \mathbb{R}^{h \times w \times h \times w}$ * **Res Block** 6 AttentionCut Up Indexed from A. sample Synthetic semantic coherence (self-attn) Inner Coherence Data spatial coherence (aeodesic dist) Noise input image Diffusion -Inversion 4

Block

Diffusion Model *

Block

*

-

CLIP-Classifiable Prior

CLIP

Class

{person

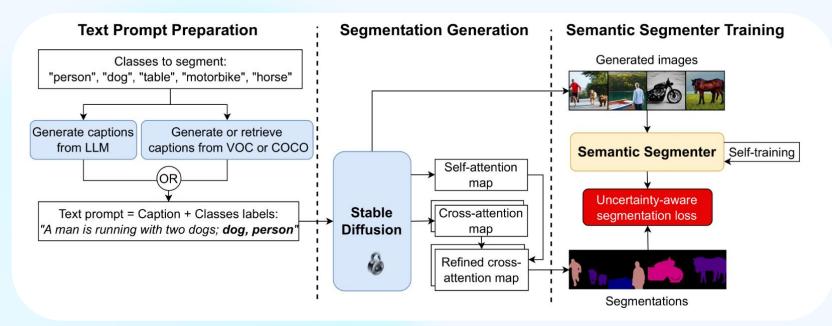
Block

Bloc

Segment Decoder

predicted

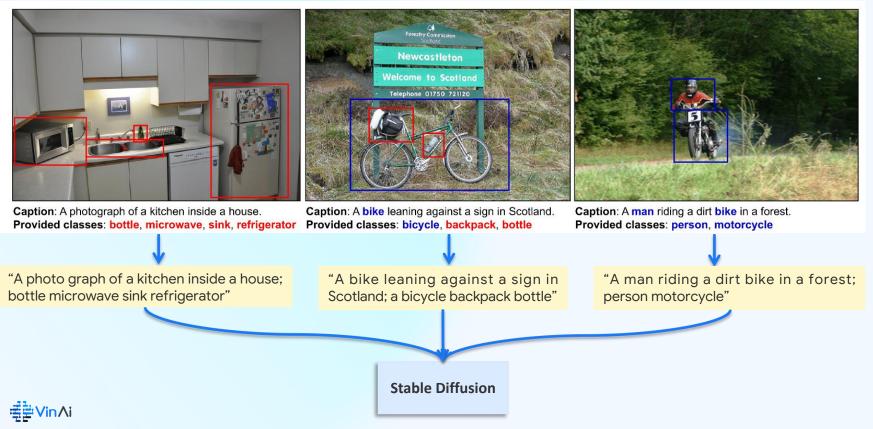
mask


Limitations:

- They can only generate single object segmentation mask per image.
- Requires complex postprocessing step to obtain final segmentation mask: DenseCRF and GraphCut

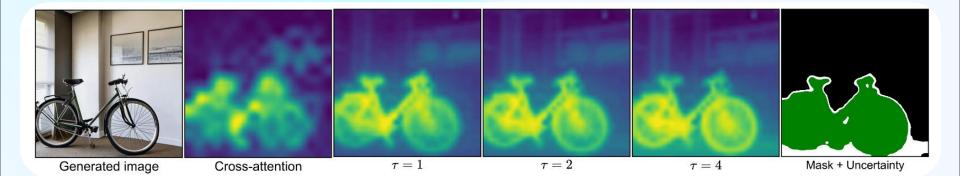
VinAl Corporate Presentation

Overview of our Approach

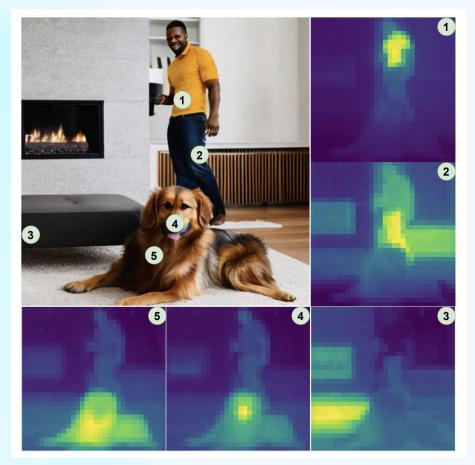

Our contributions:

- Introduce simple but effective text prompts design for generating more objects
- Employ self and cross-attention maps to produce segmentation maps

Class-prompt Appending


Several problems with the generated (provided) captions: missing classes or mismatched classes

Generating Segmentation Map from Self and Cross-attention Maps


Refine the cross-attention maps A_c by using the self-attention A_s exponentiation

$$\mathcal{A}_C^* = (\mathcal{A}_S)^ au \cdot \mathcal{A}_C$$

Why Self-attention help improve cross-attention?

Experiments

- Datasets:
 - Training: introduce new synth-VOC and synth-COCO benchmarks which only contain text prompts taken from the provided/generated captions of VOC and COCO
 - Testing: the test set of
 - **PASCAL-VOC 2012:** 20 object classes and 1,456 test images.
 - COCO 2017: 80 object classes and 5K validataion images.
- Metric: mIoU

"two people sit in the sand with their surf boards."

"a man riding a horse"

Quantitative results

Segmenter	Backbone	VOC dataset			COCO dataset	
		Training set	Val	Test	Training set	Val
DeepLabV3 DeepLabV3 Mask2Former	ResNet50 ResNet101 ResNet50	VOC's training (11.5k images)	77.4 79.9 77.3	75.2 79.8 77.2	COCO's training (2017: 118 <i>k</i> images)	48.9 54.9 57.8
Mask2Former	ResNet50	DiffuMask [8] (60k images)	57.4	-	-	-
DeepLabV3 DeepLabV3 Mask2Former	ResNet50 ResNet101 ResNet50	Dataset Diffusion $(40k \text{ images})$	61.6 64.8 60.2	59.0 64.6 60.5	Dataset Diffusion (80k images)	32.4 34.2 31.0

On VOC, our approach yields satisfactory results of 64.8 mIoU when compared to the real training set of 79.9 mIoU.

Ours outperforms DiffuMask by a large margin of 4.2 mIoU using the same Resnet50 backbone. ≝≧Vin∧i

Quantitative results

Segmenter	Backbone	VOC dataset			COCO dataset	
~ -8					Training set	Val
DeepLabV3 DeepLabV3 Mask2Former	ResNet50 ResNet101 ResNet50	VOC's training (11.5k images)		75.2 79.8 77.2	COCO's training (2017: 118k images)	48.9 54.9 57.8
Mask2Former	ResNet50	DiffuMask [8] (60k images)		-	-	-
DeepLabV3 DeepLabV3 Mask2Former	ResNet50 ResNet101 ResNet50	Dataset Diffusion (40k images)	61.6 64.8 60.2	59.0 64.6 60.5	Dataset Diffusion (80k images)	32.4 34.2 31.0

Dataset Diffusion achieves a promising result of 34.2 mIoU compared to 54.9 mIoU of real COCO training set.

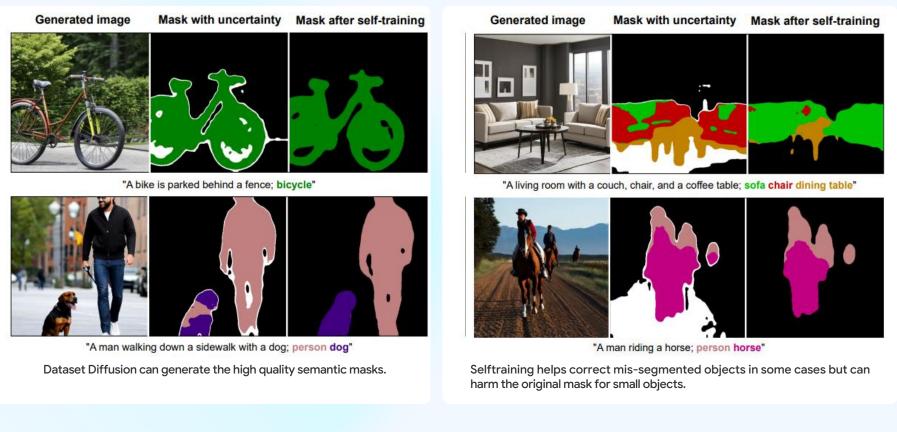
Ablation Study

≣∰Vin∧i

Self-attention

Method	Example	mIoU (%)
1: Simple text prompts	a photo of an aeroplane	54.7
2: Captions only	a large white airplane sitting on top of a boat	50.8
3: Class labels only	aeroplane boat	57.4
4: Simple text prompts + class labels a photo of an aeroplane; aeroplane boat		
5: Caption + class labels	a large white plane sitting on top of a boat; aeroplane boat	62.0

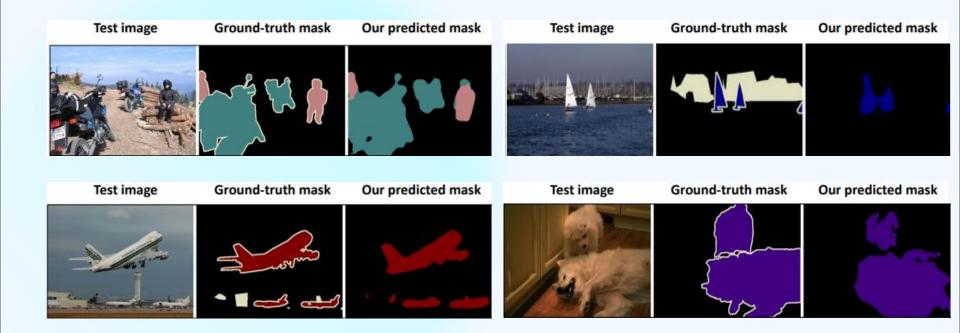
Study on different text prompt selection


Cross-attention	Self-attention	Uncertainty	Self-training	TTA	mIoU (%)
\checkmark					44.8
√	\checkmark				61.0
\checkmark	\checkmark	✓			62.0
\checkmark	\checkmark	\checkmark	\checkmark		62.7
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	64.3

32 **Cross-attention** 64 39.7 8 38.1 16 62.0 59.6 32 52.8 50.9 64 35.4 31.5 16, 32 59.7 57.3 16, 32, 64 59.1 57.2

Study on different components

Study on different feature scales


Our Generated Images and Segmentations

≝ 불 Vin∧i

Segmentation results on VOC val set

VinAl 14 Corporate Presentation

Thank you! ^{@VinAl}

https://www.vinai.io/