Neural Injective Functions for Multisets, Measures and Graphs via a Finite Witness Theorem

Tal Amir¹ Steven J. Gortler² Ilai Avni¹ Ravina Ravina¹ Nadav Dym¹

¹ Technion – Israel Institute of Technology, Haifa, Israel ² Harvard University, Cambridge, USA

13 Nov. 2023

NeurIPS 2023

tal.amir@campus.technion.ac.il

13 Nov. 2023

Introduction ●00	Main Result O	Applications	Negative Results	References
Introduction				

Multisets: Like sets, but allow repetitions.

Introduction ●00	Main Result O	Applications	Negative Results 000000	References
Introduction				

Multisets: Like sets, but allow repetitions.

They are the natural way to represent:

• 3D point-clouds

Introduction ●00	Main Result O	Applications	Negative Results 000000	References
Introduction				

Multisets: Like sets, but allow repetitions.

They are the natural way to represent:

- 3D point-clouds
- Neighborhoods of vertices in a graph

Introduction ●00	Main Result 0	Applications 00	Negative Results 000000	References
Introduction	I.			
Multisets: Like	sets, but allo	w repetitions.		

They are the natural way to represent:

- 3D point-clouds
- Neighborhoods of vertices in a graph
- Any data structure with an intrinsic order that is irrelevant to the problem.

Introduction ●00	Main Result O	Applications	Negative Results 000000	References
Introduction				
Multisets: Like	sets, but allow re	epetitions.		

They are the natural way to represent:

- 3D point-clouds
- Neighborhoods of vertices in a graph
- Any data structure with an intrinsic order that is irrelevant to the problem.

The collection of all multisets with at most *n* elements that come from a fixed set $\Omega \subseteq \mathbb{R}^d$:

$$\mathcal{S}_{\leq n}(\Omega) = \{\{\{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\}\} \mid \boldsymbol{x}_i \in \Omega, \ k \leq n\}$$

Introduction ●00	Main Result O	Applications	Negative Results 000000	References
Introduction				
Multisets: Like	sets, but allow re	epetitions.		

They are the natural way to represent:

- 3D point-clouds
- Neighborhoods of vertices in a graph
- Any data structure with an intrinsic order that is irrelevant to the problem.

The collection of all multisets with at most *n* elements that come from a fixed set $\Omega \subseteq \mathbb{R}^d$:

$$\mathcal{S}_{\leq n}(\Omega) = \{\{\!\!\{ \boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\}\!\} \mid \boldsymbol{x}_i \in \Omega, \ k \leq n\}$$

We refer to Ω as an *alphabet*.

Introduction	Main Result	Applications	Negative Results	References
○●○	0	00	000000	
Introduction				

Develop an efficient method to represent multisets by an embedding

$F: \mathcal{S}_{\leq n}(\mathbb{R}^d) \to \mathbb{R}^m.$

47 ▶

Introduction ○●○	Main Result 0	Applications	Negative Results 000000	References
Introduction				

Develop an efficient method to represent multisets by an embedding

$F: \mathcal{S}_{\leq n}(\mathbb{R}^d) \to \mathbb{R}^m.$

Desired properties of F:

э

Introduction ○●○	Main Result 0	Applications	Negative Results 000000	References
Introduction				

• Develop an efficient method to represent multisets by an *embedding*

$F: \mathcal{S}_{\leq n}(\mathbb{R}^d) \to \mathbb{R}^m.$

Desired properties of *F*:

a. Injective

Introduction ○●○	Main Result 0	Applications	Negative Results 000000	References
Introduction				

• Develop an efficient method to represent multisets by an *embedding*

$F: \mathcal{S}_{\leq n}(\mathbb{R}^d) \to \mathbb{R}^m.$

Desired properties of *F*:

- a. Injective
- b. Permutation invariant

Introduction ○●○	Main Result 0	Applications	Negative Results 000000	References
Introduction				

$$F: \mathcal{S}_{\leq n}(\mathbb{R}^d) \to \mathbb{R}^m.$$

Desired properties of *F*:

- a. Injective
- b. Permutation invariant
- c. Have a low output-dimension m

Introduction ○●○	Main Result 0	Applications	Negative Results 000000	References
Introduction				

$$F: \mathcal{S}_{\leq n}(\mathbb{R}^d) \to \mathbb{R}^m.$$

Desired properties of *F*:

- a. Injective
- b. Permutation invariant
- c. Have a low output-dimension m
- Approximate any function on S_{≤n}(ℝ^d), by composing F with existing architectures.

Introduction	Main Result	Applications	Negative Results	References
○○●	0	00	000000	

Any $f : \Omega \to \mathbb{R}^m$ induces a moment function $\hat{f} : S_{\leq n}(\Omega) \to \mathbb{R}^m$:

$$\hat{f}\left(\{\!\!\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k\}\!\!\}\right) = \sum_{i=1}^k f(\boldsymbol{x}_i)$$

Introduction 00●	Main Result 0	Applications	Negative Results 000000	References

$$\hat{f}(\{\!\!\{ \mathbf{x}_1,\ldots,\mathbf{x}_k\}\!\!\}) = \sum_{i=1}^k f(\mathbf{x}_i)$$

E> E

	Introduction ○○●	Main Result 0	Applications 00	Negative Results 000000	References
--	---------------------	------------------	--------------------	----------------------------	------------

$$\hat{f}\left(\{\!\!\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k\}\!\!\}\right) = \sum_{i=1}^k f(\boldsymbol{x}_i)$$

Studied in theory: Polynomial moments

Example. For d = 1, n = 2,

$$\hat{f}(\{\!\!\{x_1, x_2\}\!\!\}) = (x_1 + x_2, x_1^2 + x_2^2)$$

is injective on $\mathcal{S}_{\leq 2}(\mathbb{R})$.

|--|

$$\hat{f}\left(\{\!\!\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k\}\!\!\}\right) = \sum_{i=1}^k f(\boldsymbol{x}_i)$$

Studied in theory: Polynomial moments

Example. For d = 1, n = 2,

$$\hat{f}(\{\!\!\{x_1, x_2\}\!\!\}) = (x_1 + x_2, x_1^2 + x_2^2)$$

is injective on $\mathcal{S}_{\leq 2}(\mathbb{R})$.

 For d > 1, previous works require m that is exponential or high-polynomial in d, n (Balan, Haghani, and Singh 2022; Maron et al. 2019; Segol and Lipman 2019; Wang et al. 2023).

	Introduction 00●	Main Result 0	Applications 00	Negative Results 000000	References
--	---------------------	------------------	--------------------	----------------------------	------------

$$\hat{f}\left(\{\!\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k\}\!\}\right) = \sum_{i=1}^k f(\boldsymbol{x}_i)$$

Studied in theory: Polynomial moments

Example. For d = 1, n = 2,

$$\hat{f}(\{\!\!\{x_1, x_2\}\!\!\}) = (x_1 + x_2, x_1^2 + x_2^2)$$

is injective on $\mathcal{S}_{\leq 2}(\mathbb{R})$.

- For d > 1, previous works require *m* that is exponential or high-polynomial in *d*, *n* (Balan, Haghani, and Singh 2022; Maron et al. 2019; Segol and Lipman 2019; Wang et al. 2023).
- Recently m = 2nd + 1 was achieved using polynomials with random coefficients (Dym and Gortler 2022).

Introduction	Main Result	Applications	Negative Results	References
○○●	0	00	000000	

$$\hat{f}\left(\{\!\!\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k\}\!\!\}\right) = \sum_{i=1}^k f(\boldsymbol{x}_i)$$

Used in practice: Neural moments

(Zaheer et al. 2017)

$$\hat{f}(\{\!\!\{ \boldsymbol{x}_1,\ldots,\boldsymbol{x}_k\}\!\!\}) = \sum_{i=1}^k \sigma(\boldsymbol{A}\boldsymbol{x}_i + \boldsymbol{b})$$

Neurl	PS	2023

Introduction	Main Result	Applications	Negative Results	References
○○●	0	00	000000	

$$\hat{f}\left(\{\!\!\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k\}\!\!\}\right) = \sum_{i=1}^k f(\boldsymbol{x}_i)$$

Used in practice: Neural moments

(Zaheer et al. 2017)

$$\hat{f}(\{\!\!\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k\}\!\!\}) = \sum_{i=1}^k \sigma(\boldsymbol{A}\boldsymbol{x}_i + \boldsymbol{b})$$

 \rightarrow Not known to be injective.

Introduction 000	Main Result ●	Applications	Negative Results 000000	References
Main Result				

$$\hat{f}(\{\!\!\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k\}\!\!\}) = \sum_{i=1}^n \sigma(\boldsymbol{A}\boldsymbol{x}_i + \boldsymbol{b})$$

is injective on $\mathcal{S}_{\leq n}(\mathbb{R}^d)$.

Introduction 000	Main Result ●	Applications	Negative Results 000000	References
Main Result				

$$\hat{f}(\{\!\!\{ \mathbf{x}_1,\ldots,\mathbf{x}_k\}\!\!\}) = \sum_{i=1}^n \sigma(\mathbf{A}\mathbf{x}_i + \mathbf{b})$$

is injective on $S_{\leq n}(\mathbb{R}^d)$. For injectivity on $S_{\leq n}(\Omega)$ with a countable Ω , it suffices to take $m \geq 1$.

Introduction	Main Result	Applications	Negative Results	References
000	●	00	000000	
Main Result				

$$\hat{f}(\{\!\!\{ \mathbf{x}_1,\ldots,\mathbf{x}_k\}\!\!\}) = \sum_{i=1}^n \sigma(\mathbf{A}\mathbf{x}_i + \mathbf{b})$$

is injective on $S_{\leq n}(\mathbb{R}^d)$. For injectivity on $S_{\leq n}(\Omega)$ with a countable Ω , it suffices to take $m \geq 1$.

• More generally, m = 2D + 1 is required, where D is the *intrinsic* dimension of the input space $S_{\leq n}(\Omega)$.

Introduction	Main Result	Applications	Negative Results	References
000	●	00	000000	
Main Result				

$$\hat{f}(\{\!\!\{\mathbf{x}_1,\ldots,\mathbf{x}_k\}\!\!\}) = \sum_{i=1}^n \sigma(\mathbf{A}\mathbf{x}_i + \mathbf{b})$$

is injective on $S_{\leq n}(\mathbb{R}^d)$. For injectivity on $S_{\leq n}(\Omega)$ with a countable Ω , it suffices to take $m \geq 1$.

- More generally, m = 2D + 1 is required, where D is the *intrinsic* dimension of the input space $S_{\leq n}(\Omega)$.
- This required size is near-optimal (essentially up to a multiplicative factor of 2).

Introduction	Main Result	Applications	Negative Results	References
000	0	●○	000000	
Applications				

Introduction	Main Result	Applications	Negative Results	References
000	0	●○	000000	
A 11				

1. Universal approximation of functions on multisets

Corollary. Let $K \subseteq \mathbb{R}^d$ be compact. Let σ be analytic and non-polynomial. Set m = 2nd + 1. Then for almost all $\mathbf{A} \in \mathbb{R}^{m \times d}$, $\mathbf{b} \in \mathbb{R}^m$, any continuous $f : S_{\leq n}(K) \to \mathbb{R}$ can be approximated by functions of the form

$$f(\{\!\!\{ \mathbf{x}_1, \ldots, \mathbf{x}_k\}\!\!\}) \approx F\left(\sum_{i=1}^k \sigma(\mathbf{A}\mathbf{x}_i + \mathbf{b})\right), \text{ with } F \text{ being an MLP.}$$

Introduction	Main Result	Applications	Negative Results	References
000	0	●○	000000	
.				

1. Universal approximation of functions on multisets

Corollary. Let $K \subseteq \mathbb{R}^d$ be compact. Let σ be analytic and non-polynomial. Set m = 2nd + 1. Then for almost all $\mathbf{A} \in \mathbb{R}^{m \times d}$, $\mathbf{b} \in \mathbb{R}^m$, any continuous $f : S_{\leq n}(K) \to \mathbb{R}$ can be approximated by functions of the form

$$f(\{\!\!\{ \mathbf{x}_1, \ldots, \mathbf{x}_k\}\!\!\}) \approx F\left(\sum_{i=1}^k \sigma(\mathbf{A}\mathbf{x}_i + \mathbf{b})\right), \text{ with } F \text{ being an MLP}.$$

Previous works use MLPs to *approximate* the injective function fed to F (Maron et al. 2019; Xu et al. 2018; Zaheer et al. 2017). The number of neurons required for injectivity was not known, and in some cases is infinite.

Introduction	Main Result	Applications	Negative Results	References
000	O	○●	000000	

2. Weisfeiler-Leman equivalent MPNNs with neural aggregators

Corollary. Consider an MPNN with random weights, analytic non-polynomial activations, and one hidden feature in \mathbb{R} per vertex. Such MPNN, when run for T iterations, returns different outputs for any two graphs that can be separated by T iterations of 1-WL.

Introduction	Main Result	Applications	Negative Results	References
000	O	○●	000000	

2. Weisfeiler-Leman equivalent MPNNs with neural aggregators

Corollary. Consider an MPNN with random weights, analytic non-polynomial activations, and one hidden feature in \mathbb{R} per vertex. Such MPNN, when run for T iterations, returns different outputs for any two graphs that can be separated by T iterations of 1-WL.

 $\rightarrow \mbox{ Can support vertex features in } \mathbb{R}^d.$ Requires hidden dimension $m \geq 2nd+1.$

Introduction	Main Result	Applications	Negative Results	References
000	O	○●	000000	

2. Weisfeiler-Leman equivalent MPNNs with neural aggregators

Corollary. Consider an MPNN with random weights, analytic non-polynomial activations, and one hidden feature in \mathbb{R} per vertex. Such MPNN, when run for T iterations, returns different outputs for any two graphs that can be separated by T iterations of 1-WL.

ightarrow Can support vertex features in \mathbb{R}^d . Requires hidden dimension $m \geq 2nd + 1$.

Previous works use multiset functions that are not MLPs (Xu et al. 2018), or require a number of parameters and node features that depends polylogarithmically on the graph size (Aamand et al. 2022; Morris, Ritzert, et al. 2019).

< 回 ト < 三 ト < 三 ト

Introduction	Main Result	Applications	Negative Results	References
000	O	○●	000000	

2. Weisfeiler-Leman equivalent MPNNs with neural aggregators

Corollary. Consider an MPNN with random weights, analytic non-polynomial activations, and one hidden feature in \mathbb{R} per vertex. Such MPNN, when run for T iterations, returns different outputs for any two graphs that can be separated by T iterations of 1-WL.

ightarrow Can support vertex features in \mathbb{R}^d . Requires hidden dimension $m \geq 2nd + 1$.

Previous works use multiset functions that are not MLPs (Xu et al. 2018), or require a number of parameters and node features that depends polylogarithmically on the graph size (Aamand et al. 2022; Morris, Ritzert, et al. 2019).

Our work uses a single node feature and a constant number of parameters.

< ロト < 同ト < ヨト < ヨト

Negative results: Limitations of moment functions

Image: A matrix

Negative results: Limitations of moment functions

1. Moments of neural networks with piecewise-linear activations (e.g. ReLU, leaky ReLU, HardTanh) cannot be injective:

Proposition. Let $\Omega \subseteq \mathbb{R}^d$ be an open set, and let $n \ge 2$. If $\psi : \mathbb{R}^d \to \mathbb{R}^m$ is piecewise linear, then its moment $\hat{\psi} : \mathcal{S}_{\leq n}(\Omega) \to \mathbb{R}^m$ is not injective.

Negative results: Limitations of moment functions

1. Moments of neural networks with piecewise-linear activations (e.g. ReLU, leaky ReLU, HardTanh) cannot be injective:

Proposition. Let $\Omega \subseteq \mathbb{R}^d$ be an open set, and let $n \ge 2$. If $\psi : \mathbb{R}^d \to \mathbb{R}^m$ is piecewise linear, then its moment $\hat{\psi} : \mathcal{S}_{\leq n}(\Omega) \to \mathbb{R}^m$ is not injective.

2. Even when moment functions are injective, they can never be bi-Lipschitz:

Proposition. Let $n \ge 2$, and let $f : \mathbb{R}^d \to \mathbb{R}^m$ be differentiable at some $\mathbf{x}_0 \in \mathbb{R}^d$. Then the induced moment function $\hat{f} : S_{\le n}(\mathbb{R}^d) \to \mathbb{R}^m$ is not bi-Lipschitz.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Main Result	Applications	Negative Results	References
000	0	00	○●○○○○	

Numerical Demonstration

Hidden Dimension	Analytic			Piecewise Linear		
	Tanh	SiLU	Sin	HardTanh	ReLU	Leaky ReLU
1	0	0	0	7	17	7
10	0	0	0	3	7	7
50	0	0	0	4	5	5
100	0	0	0	1	0	0

Table: Number of non-isomorphic pairs of graphs not separated by MPNN, out of the 600 pairs in the TUDataset (Morris, Kriege, et al. 2020)

Introduction	Main Result	Applications	Negative Results	References
000	0	00	00●000	
Finite Witnes	ss Theorem			

Our injectivity results are based on a novel theorem, which enables reducing an infinite family of analytic equality constraints

 $\{F(\mathbf{x}; \boldsymbol{\theta}) = 0 \mid \boldsymbol{\theta} \in \mathbb{W}\}$

to a finite subset with random parameters:

$$\{F\left(\mathbf{x};\boldsymbol{\theta}^{(i)}\right)=0 \mid i=1,\ldots,m\}.$$

Introduction	Main Result	Applications	Negative Results	References
000	O	00	000●00	

Finite Witness Theorem

Finite Witness Theorem

Theorem. Let $\mathbb{M} \subseteq \mathbb{R}^p$ be an admissible set (see below) of dimension D, and let $\mathbb{W} \subseteq \mathbb{R}^q$ be open and connected. Let $F : \mathbb{M} \times \mathbb{W} \to \mathbb{R}$ be an analytic function. Let \mathcal{N} be the set

$$\mathcal{N} = \{ \boldsymbol{x} \in \mathbb{M} \mid F(\boldsymbol{x}; \boldsymbol{\theta}) = 0, \ \forall \boldsymbol{\theta} \in \mathbb{W} \}.$$

Then for almost any $ig(oldsymbol{ heta}^{(1)}, \dots, oldsymbol{ heta}^{(D+1)} ig) \in \mathbb{W}^{D+1}$,

$$\mathcal{N} = \{ \boldsymbol{x} \in \mathbb{M} \mid F(\boldsymbol{x}; \boldsymbol{\theta}^{(i)}) = 0, \forall i = 1, \dots D + 1 \}.$$

11/14

周 ト イヨト イヨト

Introduction	Main Result	Applications	Negative Results	References
000	0	00	000000	

Finite Witness Theorem

Finite Witness Theorem

Theorem. Let $\mathbb{M} \subseteq \mathbb{R}^{p}$ be an admissible set (see below) of dimension D, and let $\mathbb{W} \subseteq \mathbb{R}^{q}$ be open and connected. Let $F : \mathbb{M} \times \mathbb{W} \to \mathbb{R}$ be an analytic function. Let \mathcal{N} be the set

$$\mathcal{N} = \{ \boldsymbol{x} \in \mathbb{M} \mid F(\boldsymbol{x}; \boldsymbol{\theta}) = 0, \ \forall \boldsymbol{\theta} \in \mathbb{W} \}.$$

Then for almost any $ig(oldsymbol{ heta}^{(1)}, \dots, oldsymbol{ heta}^{(D+1)} ig) \in \mathbb{W}^{D+1}$,

$$\mathcal{N} = \{ \boldsymbol{x} \in \mathbb{M} \mid F(\boldsymbol{x}; \boldsymbol{\theta}^{(i)}) = 0, \forall i = 1, \dots D + 1 \}.$$

 The class of sets admissible as M is vast: It includes all open sets, closed ℓ₂-balls, polygons, as well as countable unions and finite intersections thereof.

Introduction	Main Result	Applications	Negative Results	References
000	O	00	000●00	

Finite Witness Theorem

Finite Witness Theorem

Theorem. Let $\mathbb{M} \subseteq \mathbb{R}^p$ be an admissible set (see below) of dimension D, and let $\mathbb{W} \subseteq \mathbb{R}^q$ be open and connected. Let $F : \mathbb{M} \times \mathbb{W} \to \mathbb{R}$ be an analytic function. Let \mathcal{N} be the set

$$\mathcal{N} = \{ \boldsymbol{x} \in \mathbb{M} \mid F(\boldsymbol{x}; \boldsymbol{\theta}) = 0, \ \forall \boldsymbol{\theta} \in \mathbb{W} \}.$$

Then for almost any $ig(oldsymbol{ heta}^{(1)}, \dots, oldsymbol{ heta}^{(D+1)} ig) \in \mathbb{W}^{D+1}$,

$$\mathcal{N} = \{ \boldsymbol{x} \in \mathbb{M} \mid F(\boldsymbol{x}; \boldsymbol{\theta}^{(i)}) = 0, \forall i = 1, \dots D + 1 \}.$$

- The class of sets admissible as M is vast: It includes all open sets, closed ℓ₂-balls, polygons, as well as countable unions and finite intersections thereof.
- The full version of the theorem admits a wider class of functions, which in particular includes all semialgebraic functions.

NeurIPS 2023

tal.amir@campus.technion.ac.il

13 Nov. 2023

Introduction 000	Main Result 0	Applications 00	Negative Results 0000●0	References
<u> </u>				

Generalizing to measures

Our results can be generalized to signed measures:

$$\mathcal{M}_{\leq n}(\Omega) = \{\sum_{i=1}^{n} w_i \delta_{\mathbf{x}_i} \mid \mathbf{x}_i \in \Omega, w_i \in \mathbb{R}, k \leq n\}.$$

< 17 ▶

프 > 프

Introduction 000	Main Result 0	Applications	Negative Results 0000●0	References

Generalizing to measures

Our results can be generalized to signed measures:

$$\mathcal{M}_{\leq n}(\Omega) = \{\sum_{i=1}^{n} w_i \delta_{\mathbf{x}_i} \mid \mathbf{x}_i \in \Omega, w_i \in \mathbb{R}, k \leq n\}.$$

• Can represent weighted point-clouds and vertex-neighborhoods in weighted graphs.

Introduction 000	Main Result 0	Applications	Negative Results 0000●0	References

Generalizing to measures

Our results can be generalized to signed measures:

$$\mathcal{M}_{\leq n}(\Omega) = \{\sum_{i=1}^{n} w_i \delta_{\mathbf{x}_i} \mid \mathbf{x}_i \in \Omega, w_i \in \mathbb{R}, k \leq n\}.$$

- Can represent weighted point-clouds and vertex-neighborhoods in weighted graphs.
- Can approximately represent any signed measure in \mathbb{R}^d .

Introduction 000	Main Result O	Applications	Negative Results 00000●	References

For more information, see our paper:

Tal Amir, Steven J. Gortler, Ilai Avni, Ravina Ravina, and Nadav Dym (2023). "Neural Injective Functions for Multisets, Measures and Graphs via a Finite Witness Theorem". In: *Advances in Neural Information Processing Systems*

Introduction 000	Main Result 0	Applications	Negative Results 00000●	References

For more information, see our paper:

Tal Amir, Steven J. Gortler, Ilai Avni, Ravina Ravina, and Nadav Dym (2023). "Neural Injective Functions for Multisets, Measures and Graphs via a Finite Witness Theorem". In: *Advances in Neural Information Processing Systems*

Thanks for watching

Acknowledgements

N.D. is partially funded by a Horev Fellowship. T.A, R.R. and N.D. are partially funded by ISF grant 272/23.

References

- Aamand, Anders et al. (2022). "Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks". In: Advances in Neural Information Processing Systems 35, pp. 27333–27346.
- Balan, Radu, Naveed Haghani, and Maneesh Singh (2022). "Permutation invariant representations with applications to graph deep learning". In: *arXiv preprint arXiv:2203.07546*.
- Dym, Nadav and Steven J Gortler (2022). "Low Dimensional Invariant Embeddings for Universal Geometric Learning". In: arXiv preprint arXiv:2205.02956.
- Maron, Haggai et al. (2019). "Provably powerful graph networks". In: Advances in neural information processing systems 32.
- Morris, Christopher, Nils M. Kriege, et al. (2020). "TUDataset: A collection of benchmark datasets for learning with graphs". In: ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020). arXiv: 2007.08663. URL: www.graphlearning.io.
- Morris, Christopher, Martin Ritzert, et al. (2019). "Weisfeiler and leman go neural: Higher-order graph neural networks". In: Proceedings of the AAAI conference on Dage