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Introduction

Multisets: Like sets, but allow repetitions.

They are the natural way to represent:

3D point-clouds

Neighborhoods of vertices in a graph

Any data structure with an intrinsic order that is irrelevant to the
problem.

The collection of all multisets with at most n elements that come from a
fixed set Ω ⊆ Rd :

S≤n(Ω) = {{{x1, . . . , xk}} | xi ∈ Ω, k ≤ n}

We refer to Ω as an alphabet.
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Introduction

Goals:

1 Develop an efficient method to represent multisets by an embedding

F : S≤n(Rd) → Rm.

Desired properties of F :

a. Injective
b. Permutation invariant
c. Have a low output-dimension m

2 Approximate any function on S≤n(Rd), by composing F with existing
architectures.
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A popular approach: Moment functions

Any f : Ω → Rm induces a moment function f̂ : S≤n(Ω) → Rm:

f̂ ({{x1, . . . , xk}}) =
k∑

i=1

f (xi )
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A popular approach: Moment functions

f̂ ({{x1, . . . , xk}}) =
k∑

i=1

f (xi )

Studied in theory: Polynomial moments

Example. For d = 1, n = 2,

f̂ ({{x1, x2}}) =
(
x1 + x2, x

2
1 + x22

)
is injective on S≤2 (R).

For d > 1, previous works require m that is exponential or
high-polynomial in d , n (Balan, Haghani, and Singh 2022; Maron
et al. 2019; Segol and Lipman 2019; Wang et al. 2023).

Recently m = 2nd + 1 was achieved using polynomials with random
coefficients (Dym and Gortler 2022).
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A popular approach: Moment functions

f̂ ({{x1, . . . , xk}}) =
k∑

i=1

f (xi )

Used in practice: Neural moments

(Zaheer et al. 2017)

f̂ ({{x1, . . . , xk}}) =
k∑

i=1

σ(Axi + b)

→ Not known to be injective.
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Main Result

Theorem. Let σ : R → R be an analytic non-polynomial function. Let
m ≥ 2nd + 1. Then for almost any A ∈ Rm×d , b ∈ Rm, the shallow
network

f̂ ({{x1, . . . , xk}}) =
n∑

i=1

σ(Axi + b)

is injective on S≤n(Rd).

For injectivity on S≤n(Ω) with a countable Ω, it suffices to take m ≥ 1.

More generally, m = 2D + 1 is required, where D is the intrinsic
dimension of the input space S≤n(Ω).

This required size is near-optimal (essentially up to a multiplicative
factor of 2).

NeurIPS 2023 tal.amir@campus.technion.ac.il 13 Nov. 2023 5 / 14



Introduction Main Result Applications Negative Results References

Main Result

Theorem. Let σ : R → R be an analytic non-polynomial function. Let
m ≥ 2nd + 1. Then for almost any A ∈ Rm×d , b ∈ Rm, the shallow
network

f̂ ({{x1, . . . , xk}}) =
n∑

i=1

σ(Axi + b)

is injective on S≤n(Rd).
For injectivity on S≤n(Ω) with a countable Ω, it suffices to take m ≥ 1.

More generally, m = 2D + 1 is required, where D is the intrinsic
dimension of the input space S≤n(Ω).

This required size is near-optimal (essentially up to a multiplicative
factor of 2).

NeurIPS 2023 tal.amir@campus.technion.ac.il 13 Nov. 2023 5 / 14



Introduction Main Result Applications Negative Results References

Main Result

Theorem. Let σ : R → R be an analytic non-polynomial function. Let
m ≥ 2nd + 1. Then for almost any A ∈ Rm×d , b ∈ Rm, the shallow
network

f̂ ({{x1, . . . , xk}}) =
n∑

i=1

σ(Axi + b)

is injective on S≤n(Rd).
For injectivity on S≤n(Ω) with a countable Ω, it suffices to take m ≥ 1.

More generally, m = 2D + 1 is required, where D is the intrinsic
dimension of the input space S≤n(Ω).

This required size is near-optimal (essentially up to a multiplicative
factor of 2).

NeurIPS 2023 tal.amir@campus.technion.ac.il 13 Nov. 2023 5 / 14



Introduction Main Result Applications Negative Results References

Main Result

Theorem. Let σ : R → R be an analytic non-polynomial function. Let
m ≥ 2nd + 1. Then for almost any A ∈ Rm×d , b ∈ Rm, the shallow
network

f̂ ({{x1, . . . , xk}}) =
n∑

i=1

σ(Axi + b)

is injective on S≤n(Rd).
For injectivity on S≤n(Ω) with a countable Ω, it suffices to take m ≥ 1.

More generally, m = 2D + 1 is required, where D is the intrinsic
dimension of the input space S≤n(Ω).

This required size is near-optimal (essentially up to a multiplicative
factor of 2).

NeurIPS 2023 tal.amir@campus.technion.ac.il 13 Nov. 2023 5 / 14



Introduction Main Result Applications Negative Results References

Applications

1. Universal approximation of functions on multisets

Corollary. Let K ⊆ Rd be compact. Let σ be analytic and
non-polynomial. Set m = 2nd + 1. Then for almost all A ∈ Rm×d ,
b ∈ Rm, any continuous f : S≤n(K ) → R can be approximated by
functions of the form

f ({{x1, . . . , xk}}) ≈ F

(
k∑

i=1

σ(Axi + b)

)
, with F being an MLP.

Previous works use MLPs to approximate the injective function fed to F
(Maron et al. 2019; Xu et al. 2018; Zaheer et al. 2017). The number of
neurons required for injectivity was not known, and in some cases is
infinite.
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Applications

2. Weisfeiler-Leman equivalent MPNNs with neural aggregators

Corollary. Consider an MPNN with random weights, analytic
non-polynomial activations, and one hidden feature in R per vertex. Such
MPNN, when run for T iterations, returns different outputs for any two
graphs that can be separated by T iterations of 1-WL.

→ Can support vertex features in Rd . Requires hidden dimension
m ≥ 2nd + 1.

Previous works use multiset functions that are not MLPs (Xu et al. 2018),
or require a number of parameters and node features that depends
polylogarithmically on the graph size (Aamand et al. 2022; Morris, Ritzert,
et al. 2019).
Our work uses a single node feature and a constant number of parameters.
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Negative results: Limitations of moment functions

1. Moments of neural networks with piecewise-linear activations (e.g.
ReLU, leaky ReLU, HardTanh) cannot be injective:

Proposition. Let Ω ⊆ Rd be an open set, and let n ≥ 2. If ψ : Rd → Rm

is piecewise linear, then its moment ψ̂ : S≤n(Ω) → Rm is not injective.

2. Even when moment functions are injective, they can never be
bi-Lipschitz:

Proposition. Let n ≥ 2, and let f : Rd → Rm be differentiable at some
x0 ∈ Rd . Then the induced moment function f̂ : S≤n(Rd) → Rm is not
bi-Lipschitz.
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Numerical Demonstration

Analytic Piecewise Linear

Tanh SiLU Sin HardTanh ReLU Leaky ReLU

1 0 0 0 7 17 7

10 0 0 0 3 7 7

50 0 0 0 4 5 5

100 0 0 0 1 0 0

Hidden
Dimension

Table: Number of non-isomorphic pairs of graphs not separated by MPNN,
out of the 600 pairs in the TUDataset (Morris, Kriege, et al. 2020)
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Finite Witness Theorem

Our injectivity results are based on a novel theorem, which enables
reducing an infinite family of analytic equality constraints

{F (x ;θ) = 0 | θ ∈ W}

to a finite subset with random parameters:

{F
(
x ;θ(i)

)
= 0 | i = 1, . . . ,m}.
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Finite Witness Theorem

Finite Witness Theorem

Theorem. Let M ⊆ Rp be an admissible set (see below) of dimension D,
and let W ⊆ Rq be open and connected. Let F : M×W → R be an
analytic function. Let N be the set

N = {x ∈ M | F (x ;θ) = 0, ∀θ ∈ W}.

Then for almost any
(
θ(1), . . . ,θ(D+1)

)
∈ WD+1,

N = {x ∈ M | F (x ;θ(i)) = 0, ∀i = 1, . . .D + 1}.

The class of sets admissible as M is vast: It includes all open sets,
closed ℓ2-balls, polygons, as well as countable unions and finite
intersections thereof.
The full version of the theorem admits a wider class of functions,
which in particular includes all semialgebraic functions.

NeurIPS 2023 tal.amir@campus.technion.ac.il 13 Nov. 2023 11 / 14
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Generalizing to measures

Our results can be generalized to signed measures:

M≤n(Ω) = {
n∑

i=1

wiδxi | xi ∈ Ω, wi ∈ R, k ≤ n}.

Can represent weighted point-clouds and vertex-neighborhoods in
weighted graphs.

Can approximately represent any signed measure in Rd .

NeurIPS 2023 tal.amir@campus.technion.ac.il 13 Nov. 2023 12 / 14



Introduction Main Result Applications Negative Results References

Generalizing to measures

Our results can be generalized to signed measures:

M≤n(Ω) = {
n∑

i=1

wiδxi | xi ∈ Ω, wi ∈ R, k ≤ n}.

Can represent weighted point-clouds and vertex-neighborhoods in
weighted graphs.

Can approximately represent any signed measure in Rd .

NeurIPS 2023 tal.amir@campus.technion.ac.il 13 Nov. 2023 12 / 14



Introduction Main Result Applications Negative Results References

Generalizing to measures

Our results can be generalized to signed measures:

M≤n(Ω) = {
n∑

i=1

wiδxi | xi ∈ Ω, wi ∈ R, k ≤ n}.

Can represent weighted point-clouds and vertex-neighborhoods in
weighted graphs.

Can approximately represent any signed measure in Rd .

NeurIPS 2023 tal.amir@campus.technion.ac.il 13 Nov. 2023 12 / 14



Introduction Main Result Applications Negative Results References

For more information, see our paper:

Tal Amir, Steven J. Gortler, Ilai Avni, Ravina Ravina, and Nadav Dym
(2023). “Neural Injective Functions for Multisets, Measures and Graphs
via a Finite Witness Theorem”. In: Advances in Neural Information
Processing Systems

Thanks for watching
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