Neural Injective Functions

for Multisets, Measures and Graphs

 via a Finite Witness TheoremTal Amir ${ }^{1} \quad$ Steven J. Gortler ${ }^{2}$
llai Avni ${ }^{1} \quad$ Ravina Ravina ${ }^{1} \quad$ Nadav Dym ${ }^{1}$
${ }^{1}$ Technion - Israel Institute of Technology, Haifa, Israel
${ }^{2}$ Harvard University, Cambridge, USA

13 Nov. 2023

Introduction

Multisets: Like sets, but allow repetitions.

Introduction

Multisets: Like sets, but allow repetitions.
They are the natural way to represent:

- 3D point-clouds

Introduction

Multisets: Like sets, but allow repetitions.

They are the natural way to represent:

- 3D point-clouds
- Neighborhoods of vertices in a graph

Introduction

Multisets: Like sets, but allow repetitions.

They are the natural way to represent:

- 3D point-clouds
- Neighborhoods of vertices in a graph
- Any data structure with an intrinsic order that is irrelevant to the problem.

Introduction

Multisets: Like sets, but allow repetitions.

They are the natural way to represent:

- 3D point-clouds
- Neighborhoods of vertices in a graph
- Any data structure with an intrinsic order that is irrelevant to the problem.

The collection of all multisets with at most n elements that come from a fixed set $\Omega \subseteq \mathbb{R}^{d}$:

$$
\mathcal{S}_{\leq n}(\Omega)=\left\{\left\{\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}\right\} \mid \boldsymbol{x}_{i} \in \Omega, k \leq n\right\}
$$

Introduction

Multisets: Like sets, but allow repetitions.

They are the natural way to represent:

- 3D point-clouds
- Neighborhoods of vertices in a graph
- Any data structure with an intrinsic order that is irrelevant to the problem.

The collection of all multisets with at most n elements that come from a fixed set $\Omega \subseteq \mathbb{R}^{d}$:

$$
\left.\mathcal{S}_{\leq n}(\Omega)=\left\{\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}\right\} \mid \boldsymbol{x}_{i} \in \Omega, k \leq n\right\}
$$

We refer to Ω as an alphabet.

Introduction

Goals:
(1) Develop an efficient method to represent multisets by an embedding

$$
F: \mathcal{S}_{\leq n}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{m}
$$

Introduction

Goals:
(1) Develop an efficient method to represent multisets by an embedding

$$
F: \mathcal{S}_{\leq n}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{m}
$$

Desired properties of F :

Introduction

Goals:
(1) Develop an efficient method to represent multisets by an embedding

$$
F: \mathcal{S}_{\leq n}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{m}
$$

Desired properties of F :
a. Injective

Introduction

Goals:
(1) Develop an efficient method to represent multisets by an embedding

$$
F: \mathcal{S}_{\leq n}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{m}
$$

Desired properties of F :
a. Injective
b. Permutation invariant

Introduction

Goals:
(1) Develop an efficient method to represent multisets by an embedding

$$
F: \mathcal{S}_{\leq n}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{m}
$$

Desired properties of F :
a. Injective
b. Permutation invariant
c. Have a low output-dimension m

Introduction

Goals:
(1) Develop an efficient method to represent multisets by an embedding

$$
F: \mathcal{S}_{\leq n}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{m}
$$

Desired properties of F :
a. Injective
b. Permutation invariant
c. Have a low output-dimension m
(2) Approximate any function on $\mathcal{S}_{\leq n}\left(\mathbb{R}^{d}\right)$, by composing F with existing architectures.

A popular approach: Moment functions

Any $f: \Omega \rightarrow \mathbb{R}^{m}$ induces a moment function $\hat{f}: \mathcal{S}_{\leq n}(\Omega) \rightarrow \mathbb{R}^{m}$:

$$
\left.\hat{f}\left(\left\{x_{1}, \ldots, x_{k}\right\}\right\}\right)=\sum_{i=1}^{k} f\left(x_{i}\right)
$$

A popular approach: Moment functions

$$
\left.\hat{f}\left(\left\{x_{1}, \ldots, x_{k}\right\}\right\}\right)=\sum_{i=1}^{k} f\left(x_{i}\right)
$$

A popular approach: Moment functions

$$
\hat{f}\left(\left\{\left\{x_{1}, \ldots, x_{k}\right\}\right\}\right)=\sum_{i=1}^{k} f\left(x_{i}\right)
$$

Studied in theory: Polynomial moments

Example. For $d=1, n=2$,

$$
\hat{f}\left(\left\{\left\{x_{1}, x_{2}\right\}\right\}\right)=\left(x_{1}+x_{2}, x_{1}^{2}+x_{2}^{2}\right)
$$

is injective on $\mathcal{S}_{\leq 2}(\mathbb{R})$.

A popular approach: Moment functions

$$
\left.\hat{f}\left(\left\{x_{1}, \ldots, x_{k}\right\}\right\}\right)=\sum_{i=1}^{k} f\left(x_{i}\right)
$$

Studied in theory: Polynomial moments

Example. For $d=1, n=2$,

$$
\hat{f}\left(\left\{\left\{x_{1}, x_{2}\right\}\right\}\right)=\left(x_{1}+x_{2}, x_{1}^{2}+x_{2}^{2}\right)
$$

is injective on $\mathcal{S}_{\leq 2}(\mathbb{R})$.

- For $d>1$, previous works require m that is exponential or high-polynomial in d, n (Balan, Haghani, and Singh 2022; Maron et al. 2019; Segol and Lipman 2019; Wang et al. 2023).

A popular approach: Moment functions

$$
\hat{f}\left(\left\{\left\{x_{1}, \ldots, x_{k}\right\}\right\}\right)=\sum_{i=1}^{k} f\left(x_{i}\right)
$$

Studied in theory: Polynomial moments

Example. For $d=1, n=2$,

$$
\hat{f}\left(\left\{\left\{x_{1}, x_{2}\right\}\right\}\right)=\left(x_{1}+x_{2}, x_{1}^{2}+x_{2}^{2}\right)
$$

is injective on $\mathcal{S}_{\leq 2}(\mathbb{R})$.

- For $d>1$, previous works require m that is exponential or high-polynomial in d, n (Balan, Haghani, and Singh 2022; Maron et al. 2019; Segol and Lipman 2019; Wang et al. 2023).
- Recently $m=2 n d+1$ was achieved using polynomials with random coefficients (Dym and Gortler 2022).

A popular approach: Moment functions

$$
\left.\hat{f}\left(\left\{x_{1}, \ldots, x_{k}\right\}\right\}\right)=\sum_{i=1}^{k} f\left(x_{i}\right)
$$

Used in practice: Neural moments

(Zaheer et al. 2017)

$$
\left.\hat{f}\left(\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}\right\}\right)=\sum_{i=1}^{k} \sigma\left(\boldsymbol{A} \boldsymbol{x}_{i}+\boldsymbol{b}\right)
$$

A popular approach: Moment functions

$$
\hat{f}\left(\left\{\left\{x_{1}, \ldots, x_{k}\right\}\right\}\right)=\sum_{i=1}^{k} f\left(x_{i}\right)
$$

Used in practice: Neural moments

(Zaheer et al. 2017)

$$
\left.\hat{f}\left(\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}\right\}\right)=\sum_{i=1}^{k} \sigma\left(\boldsymbol{A} \boldsymbol{x}_{i}+\boldsymbol{b}\right)
$$

\rightarrow Not known to be injective.

Main Result

Theorem. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be an analytic non-polynomial function. Let $m \geq 2 n d+1$. Then for almost any $\boldsymbol{A} \in \mathbb{R}^{m \times d}, \boldsymbol{b} \in \mathbb{R}^{m}$, the shallow network

$$
\left.\hat{f}\left(\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}\right\}\right)=\sum_{i=1}^{n} \sigma\left(\boldsymbol{A} \boldsymbol{x}_{i}+\boldsymbol{b}\right)
$$

is injective on $\mathcal{S}_{\leq n}\left(\mathbb{R}^{d}\right)$.

Main Result

Theorem. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be an analytic non-polynomial function. Let $m \geq 2 n d+1$. Then for almost any $\boldsymbol{A} \in \mathbb{R}^{m \times d}, \boldsymbol{b} \in \mathbb{R}^{m}$, the shallow network

$$
\left.\hat{f}\left(\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}\right\}\right)=\sum_{i=1}^{n} \sigma\left(\boldsymbol{A} \boldsymbol{x}_{i}+\boldsymbol{b}\right)
$$

is injective on $\mathcal{S}_{\leq n}\left(\mathbb{R}^{d}\right)$.
For injectivity on $\mathcal{S}_{\leq n}(\Omega)$ with a countable Ω, it suffices to take $m \geq 1$.

Main Result

Theorem. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be an analytic non-polynomial function. Let $m \geq 2 n d+1$. Then for almost any $\boldsymbol{A} \in \mathbb{R}^{m \times d}, \boldsymbol{b} \in \mathbb{R}^{m}$, the shallow network

$$
\left.\hat{f}\left(\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}\right\}\right)=\sum_{i=1}^{n} \sigma\left(\boldsymbol{A} \boldsymbol{x}_{i}+\boldsymbol{b}\right)
$$

is injective on $\mathcal{S}_{\leq n}\left(\mathbb{R}^{d}\right)$.
For injectivity on $\mathcal{S}_{\leq n}(\Omega)$ with a countable Ω, it suffices to take $m \geq 1$.

- More generally, $m=2 D+1$ is required, where D is the intrinsic dimension of the input space $\mathcal{S}_{\leq n}(\Omega)$.

Main Result

Theorem. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be an analytic non-polynomial function. Let $m \geq 2 n d+1$. Then for almost any $\boldsymbol{A} \in \mathbb{R}^{m \times d}, \boldsymbol{b} \in \mathbb{R}^{m}$, the shallow network

$$
\left.\hat{f}\left(\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}\right\}\right)=\sum_{i=1}^{n} \sigma\left(\boldsymbol{A} \boldsymbol{x}_{i}+\boldsymbol{b}\right)
$$

is injective on $\mathcal{S}_{\leq n}\left(\mathbb{R}^{d}\right)$.
For injectivity on $\mathcal{S}_{\leq n}(\Omega)$ with a countable Ω, it suffices to take $m \geq 1$.

- More generally, $m=2 D+1$ is required, where D is the intrinsic dimension of the input space $\mathcal{S}_{\leq n}(\Omega)$.
- This required size is near-optimal (essentially up to a multiplicative factor of 2).

Applications

Applications

1. Universal approximation of functions on multisets

Corollary. Let $K \subseteq \mathbb{R}^{d}$ be compact. Let σ be analytic and non-polynomial. Set $m=2 n d+1$. Then for almost all $\boldsymbol{A} \in \mathbb{R}^{m \times d}$, $\boldsymbol{b} \in \mathbb{R}^{m}$, any continuous $f: \mathcal{S}_{\leq n}(K) \rightarrow \mathbb{R}$ can be approximated by functions of the form

$$
f\left(\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}\right) \approx F\left(\sum_{i=1}^{k} \sigma\left(\boldsymbol{A} \boldsymbol{x}_{i}+\boldsymbol{b}\right)\right), \quad \text { with } F \text { being an MLP. }
$$

Applications

1. Universal approximation of functions on multisets

Corollary. Let $K \subseteq \mathbb{R}^{d}$ be compact. Let σ be analytic and non-polynomial. Set $m=2 n d+1$. Then for almost all $\boldsymbol{A} \in \mathbb{R}^{m \times d}$, $\boldsymbol{b} \in \mathbb{R}^{m}$, any continuous $f: \mathcal{S}_{\leq n}(K) \rightarrow \mathbb{R}$ can be approximated by functions of the form

$$
f\left(\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}\right) \approx F\left(\sum_{i=1}^{k} \sigma\left(\boldsymbol{A} \boldsymbol{x}_{i}+\boldsymbol{b}\right)\right), \quad \text { with } F \text { being an MLP. }
$$

Previous works use MLPs to approximate the injective function fed to F (Maron et al. 2019; Xu et al. 2018; Zaheer et al. 2017). The number of neurons required for injectivity was not known, and in some cases is infinite.

Applications

2. Weisfeiler-Leman equivalent MPNNs with neural aggregators

Corollary. Consider an MPNN with random weights, analytic non-polynomial activations, and one hidden feature in \mathbb{R} per vertex. Such MPNN, when run for T iterations, returns different outputs for any two graphs that can be separated by T iterations of 1-WL.

Applications

2. Weisfeiler-Leman equivalent MPNNs with neural aggregators

Corollary. Consider an MPNN with random weights, analytic non-polynomial activations, and one hidden feature in \mathbb{R} per vertex. Such MPNN, when run for T iterations, returns different outputs for any two graphs that can be separated by T iterations of 1-WL.
\rightarrow Can support vertex features in \mathbb{R}^{d}. Requires hidden dimension $m \geq 2 n d+1$.

Applications

2. Weisfeiler-Leman equivalent MPNNs with neural aggregators

Corollary. Consider an MPNN with random weights, analytic non-polynomial activations, and one hidden feature in \mathbb{R} per vertex. Such MPNN, when run for T iterations, returns different outputs for any two graphs that can be separated by T iterations of 1-WL.
\rightarrow Can support vertex features in \mathbb{R}^{d}. Requires hidden dimension $m \geq 2 n d+1$.

Previous works use multiset functions that are not MLPs (Xu et al. 2018), or require a number of parameters and node features that depends polylogarithmically on the graph size (Aamand et al. 2022; Morris, Ritzert, et al. 2019).

Applications

2. Weisfeiler-Leman equivalent MPNNs with neural aggregators

Corollary. Consider an MPNN with random weights, analytic non-polynomial activations, and one hidden feature in \mathbb{R} per vertex. Such MPNN, when run for T iterations, returns different outputs for any two graphs that can be separated by T iterations of 1-WL.
\rightarrow Can support vertex features in \mathbb{R}^{d}. Requires hidden dimension $m \geq 2 n d+1$.

Previous works use multiset functions that are not MLPs (Xu et al. 2018), or require a number of parameters and node features that depends polylogarithmically on the graph size (Aamand et al. 2022; Morris, Ritzert, et al. 2019).
Our work uses a single node feature and a constant number of parameters.

Negative results: Limitations of moment functions

Negative results: Limitations of moment functions

1. Moments of neural networks with piecewise-linear activations (e.g. ReLU, leaky ReLU, HardTanh) cannot be injective:

Proposition. Let $\Omega \subseteq \mathbb{R}^{d}$ be an open set, and let $n \geq 2$. If $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ is piecewise linear, then its moment $\hat{\psi}: \mathcal{S}_{\leq n}(\Omega) \rightarrow \mathbb{R}^{m}$ is not injective.

Negative results: Limitations of moment functions

1. Moments of neural networks with piecewise-linear activations (e.g. ReLU, leaky ReLU, HardTanh) cannot be injective:

Proposition. Let $\Omega \subseteq \mathbb{R}^{d}$ be an open set, and let $n \geq 2$. If $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ is piecewise linear, then its moment $\hat{\psi}: \mathcal{S}_{\leq n}(\Omega) \rightarrow \mathbb{R}^{m}$ is not injective.
2. Even when moment functions are injective, they can never be bi-Lipschitz:

Proposition. Let $n \geq 2$, and let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ be differentiable at some $x_{0} \in \mathbb{R}^{d}$. Then the induced moment function $\hat{f}: \mathcal{S}_{\leq n}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{m}$ is not bi-Lipschitz.

Numerical Demonstration

Hidden Dimension	Analytic				Piecewise Linear		
	Tanh	SiLU	Sin		HardTanh	ReLU	Leaky ReLU
	0	0	0		7	17	7
10	0	0	0		3	7	7
50	0	0	0		4	5	5
100	0	0	0		1	0	0

Table: Number of non-isomorphic pairs of graphs not separated by MPNN, out of the 600 pairs in the TUDataset (Morris, Kriege, et al. 2020)

Finite Witness Theorem

Our injectivity results are based on a novel theorem, which enables reducing an infinite family of analytic equality constraints

$$
\{F(\boldsymbol{x} ; \boldsymbol{\theta})=0 \mid \boldsymbol{\theta} \in \mathbb{W}\}
$$

to a finite subset with random parameters:

$$
\left\{F\left(\boldsymbol{x} ; \boldsymbol{\theta}^{(i)}\right)=0 \mid i=1, \ldots, m\right\}
$$

Finite Witness Theorem

Finite Witness Theorem

Theorem. Let $\mathbb{M} \subseteq \mathbb{R}^{p}$ be an admissible set (see below) of dimension D, and let $\mathbb{W} \subseteq \mathbb{R}^{q}$ be open and connected. Let $F: \mathbb{M} \times \mathbb{W} \rightarrow \mathbb{R}$ be an analytic function. Let \mathcal{N} be the set

$$
\mathcal{N}=\{\boldsymbol{x} \in \mathbb{M} \mid F(\boldsymbol{x} ; \boldsymbol{\theta})=0, \forall \boldsymbol{\theta} \in \mathbb{W}\} .
$$

Then for almost any $\left(\boldsymbol{\theta}^{(1)}, \ldots, \boldsymbol{\theta}^{(D+1)}\right) \in \mathbb{W}^{D+1}$,

$$
\mathcal{N}=\left\{\boldsymbol{x} \in \mathbb{M} \mid F\left(\boldsymbol{x} ; \boldsymbol{\theta}^{(i)}\right)=0, \forall i=1, \ldots D+1\right\} .
$$

Finite Witness Theorem

Finite Witness Theorem

Theorem. Let $\mathbb{M} \subseteq \mathbb{R}^{p}$ be an admissible set (see below) of dimension D, and let $\mathbb{W} \subseteq \mathbb{R}^{q}$ be open and connected. Let $F: \mathbb{M} \times \mathbb{W} \rightarrow \mathbb{R}$ be an analytic function. Let \mathcal{N} be the set

$$
\mathcal{N}=\{\boldsymbol{x} \in \mathbb{M} \mid F(\boldsymbol{x} ; \boldsymbol{\theta})=0, \forall \boldsymbol{\theta} \in \mathbb{W}\} .
$$

Then for almost any $\left(\boldsymbol{\theta}^{(1)}, \ldots, \boldsymbol{\theta}^{(D+1)}\right) \in \mathbb{W}^{D+1}$,

$$
\mathcal{N}=\left\{\boldsymbol{x} \in \mathbb{M} \mid F\left(\boldsymbol{x} ; \boldsymbol{\theta}^{(i)}\right)=0, \forall i=1, \ldots D+1\right\} .
$$

- The class of sets admissible as \mathbb{M} is vast: It includes all open sets, closed ℓ_{2}-balls, polygons, as well as countable unions and finite intersections thereof.

Finite Witness Theorem

Finite Witness Theorem

Theorem. Let $\mathbb{M} \subseteq \mathbb{R}^{p}$ be an admissible set (see below) of dimension D, and let $\mathbb{W} \subseteq \mathbb{R}^{q}$ be open and connected. Let $F: \mathbb{M} \times \mathbb{W} \rightarrow \mathbb{R}$ be an analytic function. Let \mathcal{N} be the set

$$
\mathcal{N}=\{\boldsymbol{x} \in \mathbb{M} \mid F(\boldsymbol{x} ; \boldsymbol{\theta})=0, \forall \boldsymbol{\theta} \in \mathbb{W}\} .
$$

Then for almost any $\left(\boldsymbol{\theta}^{(1)}, \ldots, \boldsymbol{\theta}^{(D+1)}\right) \in \mathbb{W}^{D+1}$,

$$
\mathcal{N}=\left\{\boldsymbol{x} \in \mathbb{M} \mid F\left(\boldsymbol{x} ; \boldsymbol{\theta}^{(i)}\right)=0, \forall i=1, \ldots D+1\right\} .
$$

- The class of sets admissible as \mathbb{M} is vast: It includes all open sets, closed ℓ_{2}-balls, polygons, as well as countable unions and finite intersections thereof.
- The full version of the theorem admits a wider class of functions, which in particular includes all semialgebraic functions.

Generalizing to measures

Our results can be generalized to signed measures:

$$
\mathcal{M}_{\leq n}(\Omega)=\left\{\sum_{i=1}^{n} w_{i} \delta_{\boldsymbol{x}_{i}} \mid \boldsymbol{x}_{i} \in \Omega, w_{i} \in \mathbb{R}, k \leq n\right\} .
$$

Generalizing to measures

Our results can be generalized to signed measures:

$$
\mathcal{M}_{\leq n}(\Omega)=\left\{\sum_{i=1}^{n} w_{i} \delta_{\boldsymbol{x}_{i}} \mid \boldsymbol{x}_{i} \in \Omega, w_{i} \in \mathbb{R}, k \leq n\right\} .
$$

- Can represent weighted point-clouds and vertex-neighborhoods in weighted graphs.

Generalizing to measures

Our results can be generalized to signed measures:

$$
\mathcal{M}_{\leq n}(\Omega)=\left\{\sum_{i=1}^{n} w_{i} \delta_{\boldsymbol{x}_{i}} \mid \boldsymbol{x}_{i} \in \Omega, w_{i} \in \mathbb{R}, k \leq n\right\}
$$

- Can represent weighted point-clouds and vertex-neighborhoods in weighted graphs.
- Can approximately represent any signed measure in \mathbb{R}^{d}.

For more information, see our paper:

Tal Amir, Steven J. Gortler, Ilai Avni, Ravina Ravina, and Nadav Dym (2023). "Neural Injective Functions for Multisets, Measures and Graphs via a Finite Witness Theorem". In: Advances in Neural Information Processing Systems

For more information, see our paper:

Tal Amir, Steven J. Gortler, Ilai Avni, Ravina Ravina, and Nadav Dym (2023). "Neural Injective Functions for Multisets, Measures and Graphs via a Finite Witness Theorem". In: Advances in Neural Information Processing Systems

Thanks for watching

Acknowledgements

N.D. is partially funded by a Horev Fellowship. T.A, R.R. and N.D. are partially funded by ISF grant 272/23.

References

Aamand, Anders et al. (2022). "Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks". In: Advances in Neural Information Processing Systems 35, pp. 27333-27346.
Balan, Radu, Naveed Haghani, and Maneesh Singh (2022). "Permutation invariant representations with applications to graph deep learning". In: arXiv preprint arXiv:2203.07546.
Dym, Nadav and Steven J Gortler (2022). "Low Dimensional Invariant Embeddings for Universal Geometric Learning". In: arXiv preprint arXiv:2205.02956.
Maron, Haggai et al. (2019). "Provably powerful graph networks". In: Advances in neural information processing systems 32.
Morris, Christopher, Nils M. Kriege, et al. (2020). "TUDataset: A collection of benchmark datasets for learning with graphs". In: ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020). arXiv: 2007.08663. URL: www.graphlearning.io.
Morris, Christopher, Martin Ritzert, et al. (2019). "Weisfeiler and leman go neural:

