

Fair Streaming Principal Component Analysis: Statistical and Algorithmic Viewpoint

Junghyun Lee*, Hanseul Cho*, Se-Young Yun, Chulhee Yun

Kim Jaechul Graduate School of AI, KAIST

Fair PCA: Problem Setting

• Group fairness scenario, with binary sensitive attribute $a \in \{0,1\}$

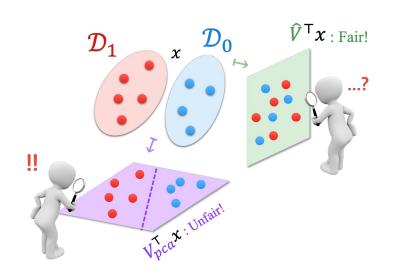
• e.g., {young, old}, {rich, poor}, {male, female}

Given.

- Samples from a mixture of \mathcal{D}_0 and \mathcal{D}_1 of the form (a,x)
 - \mathcal{D}_a 's covariance is Σ_a ; the total covariance is Σ

Our Goal.

- Output a loading matrix $V \in \mathbb{R}^{d \times k}$, $V^T V = I_k$ such that
 - Explained variance (PCA): maximize $tr(V^T \Sigma V)$
 - **Representation fairness**: make the (conditional) distributions after PCA *indistinguishable* [Olfat & Aswani, AAAI'19; Lee et al., AAAI'22, Kleindessner et al., AISTATS'23]



Statistical Viewpoint

- No statistical framework
 - PAC-type definition
 - Sample complexity guarantee
- Use of several relaxations
 without theoretical justifications
 [Olfat & Aswani, AAAI'19; Kleindessner et al., AISTATS'23]

Algorithmic Viewpoint

- Too much memory requirement
 - Require loading the whole data
 - Require computing the entire (empirical) covariance matrix
- Streaming setting? [Mitliagkas et al., NIPS'13]

Contribution #1. Statistical Viewpoint

"Null It Out" Formulation of Fair PCA

- We define the directions to be *nullified* [Rafovgel et al., ACL'20] as follows:
 - 1. mean difference $f := \mu_1 \mu_0$
 - 2. top m eigenvectors P_m of the covariance difference $\Sigma_1 \Sigma_0$

$$\max_{\boldsymbol{V}^T\boldsymbol{V}=\boldsymbol{I}_k} \operatorname{tr}(\boldsymbol{V}^T\boldsymbol{\Sigma}\boldsymbol{V}), \quad \text{subject to } \boldsymbol{V} \perp \boldsymbol{f} \text{ and } \boldsymbol{V} \perp \boldsymbol{P}_m$$

$$\Leftrightarrow \max_{\boldsymbol{V}^T\boldsymbol{V}=\boldsymbol{I}_k} \operatorname{tr}(\boldsymbol{V}^T\boldsymbol{\Pi}_{\boldsymbol{U}}^{\perp}\boldsymbol{\Sigma}\boldsymbol{\Pi}_{\boldsymbol{U}}^{\perp}\boldsymbol{V})$$

where $\Pi_U^{\perp} := I - UU^T$ and U is a semi-orthogonal matrix whose columns form a basis of $\operatorname{col}([P_m|f])$.

 V^* is the solution to the above.

PAFO-Learnability

We propose a learnability framework for fair PCA!

Definition 2. A collection \mathcal{F}_d of tuples $(\mathcal{D}_0, \mathcal{D}_1, p)$ is \textit{PAFO}^* -learnable for PCA if for any accuracy levels $\varepsilon_0, \varepsilon_f \in (0,1)$ and confidence level $\delta \in (0,1)$, with sufficiently many samples** from $\mathcal{D} = p\mathcal{D}_1 + (1-p)\mathcal{D}_0$, we can obtain \widehat{V} satisfying the following with probability at least $1-\delta$:

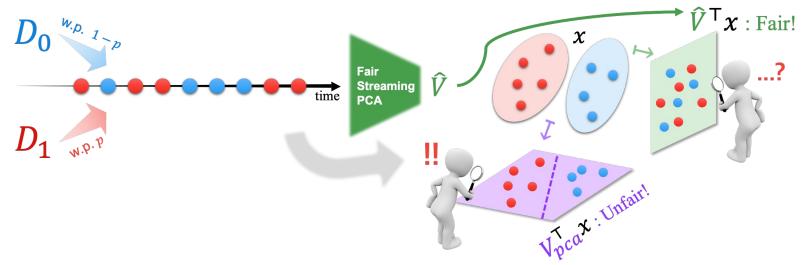
$$\operatorname{tr}(\widehat{\boldsymbol{V}}^T \boldsymbol{\Sigma} \widehat{\boldsymbol{V}}) \geq \operatorname{tr}(\boldsymbol{V}^{\star T} \boldsymbol{\Sigma} \boldsymbol{V}^{\star}) - \varepsilon_{\text{o}}, \qquad \left\| \boldsymbol{\Pi}_{\text{U}} \widehat{\boldsymbol{V}} \right\| \leq \varepsilon_{\text{f}}.$$
Optimality
Fairness

^{*}Probably Approximately Fair and Optimal

^{**}sample complexity depends on $\varepsilon_{\rm o}$, $\varepsilon_{\rm f}$, δ , and distribution-dependent quantities.

Contribution #2. Algorithmic Viewpoint

 A new problem setting called fair streaming PCA that accounts for memory limitation common in big data regimes:



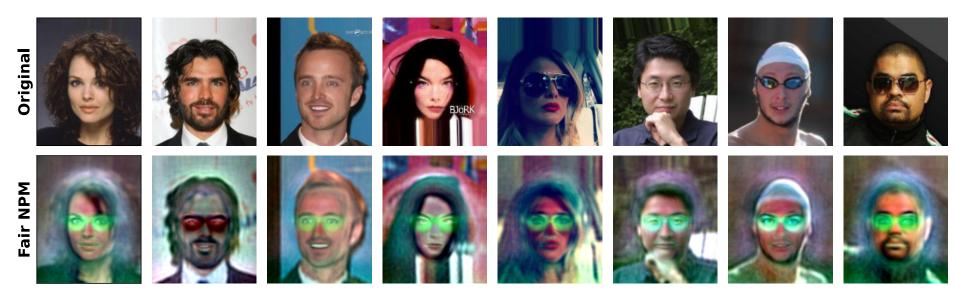
- Here, the learner can use only $o(d^2)$ memory!
 - To be precise, $O(d \max(k, m))$ memory, where k is the target dimension and m is the nullifying dimension.

- We then propose a new algorithm, the Fair Noisy Power Method (FNPM)
 - A two-phase algorithm based on the noisy power method [Hardt & Price, NIPS'14]

```
\begin{array}{ll} \textbf{Phase 1. Estimate $U$:} \\ \textbf{for } t \in [T] \textbf{ do} \\ \textbf{ Sample $b$ data points;} \\ \textbf{$W_t \leftarrow \operatorname{QR}((\widehat{\Sigma}_{1,t} - \widehat{\Sigma}_{0,t}) W_{t-1})$;} \\ \textbf{end} \\ \hat{f} \leftarrow \text{MLE estimator of $f$ ;} \\ \boldsymbol{\widehat{g}} \leftarrow \frac{\Pi_{W_T}^{\perp} \hat{f}}{\left\|\Pi_{W_T}^{\perp} \hat{f}\right\|}; \\ \textbf{return } \boldsymbol{\widehat{U}} = [W_T \mid \widehat{g}] \end{array}
```

- We also provide a sample complexity guarantee of FNPM
 - the first of its kind in the fair PCA literature!

- Full-color, original resolution CelebA Dataset
 - All 162,770 images cannot be loaded into the memory of a moderate-sized computer
- Transform the setting to streaming and apply our FNPM!
- The most scalable fair PCA algorithm to date!



Sensitive attribute: Eyeglasses

See you at Poster Session #1! (Dec 12 Tue)

Location: Great Hall & Hall B1+B2 #1600

Full paper (arXiv)

GitHub link

