BERT LOST PATIENCE: WON'T BE ROBUST TO ADVERSARIAL SLOWDOWN

Zachary Coalson, Gabriel Ritter, Rakesh Bobba, Sanghyun Hong

Oregon State University

Language Models Are Becoming Computationally Demanding

- BERT (2018)
 - 71.2% on QQP
 - 110M parameters
 - 0.05 s / 100 tokens
 - \approx \$0.52 / 1M queries

- XLM-RoBERTa XXL (2021)
 - 92.6% on QQP
 - 10.7B parameters
 - 6.71 s / 100 tokens
 - $-\approx$ \$70 / 1M queries

MULTI-EXIT LANGUAGE MODELS

- Language models *overthink*¹
- Multi-exit language models^{2,3,4}
 - Introduce internal classifiers (ICs) or early-exits to layers
 - Enable input-adaptive inference
 - Provide 2-3x computational savings without accuracy loss

¹Kaya et al., Shallow-Deep Network: Understanding and Mitigating Network Overthinking, ICML 2019 ²Zhou et al., *BERT Loses Patience: Fast and Robust Inference with Early Exit*, NeurIPS 2020 ³Xin et al., *DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference*, ACL 2020 ⁴Liao et al., *A Global Past-Future Early Exit Method for Accelerating Inference of Pre-trained Language Models*, ACL 2021

ADVERSARIAL IMPLICATIONS OF MULTI-EXIT LANGUAGE MODELS

- Research questions:
 - How robust are the computational savings to adversarial input perturbations?
 - What factors attributed to the vulnerability?
 - How can we defend against adversarial slowdown?

OUR METHOD FOR AUDITING THE VULNERABILITY TO SLOWDOWN

- WAFFLE attack
 - Performs word-level input perturbations
 - Our slowdown objective
 - Pushes IC outputs toward uniform distribution
 - Implemented on existing adversarial text attack framework^{1,2}

MULTI-EXIT MODELS ARE NOT ROBUST TO ADVERSARIAL SLOWDOWN

- Able to induce high slowdown in three multi-exit language models^{1,2,3}
 - GLUE benchmark
 - 70% average *efficacy* reduction
- More complex mechanisms are more vulnerable
- High transferability
 - Cross-seed: 33% efficacy reduction
 - Cross-mechanism: 21% efficacy reduction
- Linguistic analysis:
 - High perturbation count \neq effective
 - Subject-predicate disagreement and changed named entities

INPUT SANITIZATION IS AN EFFECTIVE COUNTERMEASURE

- Adversarial training is not a countermeasure
 - No exit layer reduction or accuracy recovery
- LLMs can be used as input sanitizers
 - 91% and 375% increase in efficacy
 - 12% and 24% points of accuracy recovered
 - Computationally intensive

THANK YOU!

Zachary Coalson

E-mail: <u>coalsonz@oregonstate.edu</u> Code: github.com/ztcoalson/WAFFLE

See You All at Our Poster Session! Great Hall & Hall B1+B2 #1703 @ <u>3PM Wed</u>

