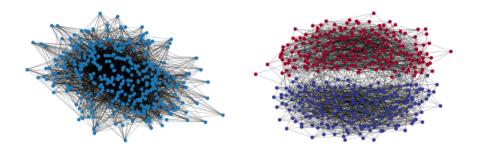
EXACT RECOVERY AND BREGMAN HARD CLUSTERING OF NODE-ATTRIBUTED STOCHASTIC BLOCK MODEL

Maximilien Dreveton Felipe S. Fernandes Daniel R. Figueiredo

EPFL, Switzerland, & Federal University of Rio de Janeiro, Brazil

NeurIPS - 2023

GRAPH CLUSTERING WITH NODE ATTRIBUTES



Setup

- Observed data: Interactions between node pairs (network) and node attributes (features).
- Hidden data: Nodes are divided into clusters.

Main focus

- Theoretical: how much information is brought by the network and by the attributes?
- Practical: derive an algorithm that learns both from the *network* and from the *attributes*.
 - network: often sparse and possibly weighted;
 - attributes: a vector with discrete or continuous entries (or a mix of both).

NODE-ATTRIBUTED SBMs

- ▶ n nodes are divided into K latent blocks. We denote by z ∈ [K]ⁿ the vector of the block (cluster) memberships, and we suppose that:
 - z_1, \cdots, z_n are iid such that $\mathbb{P}(z_i = a) = \pi_a$.
- Pairwise interactions (X_{ij})_{1≤i,j≤n} and node attributes (Y_i)_{1≤i≤n} are independent conditionally on the blocks:
 - *f_{ab}(X_{ij})*: probability of observing an interaction *X_{ij}* between a node *i* in block *a* and a node *j* in block *b*;
 - $h_a(Y_i)$: probability of observing an attribute Y_i for a node *i* in a block *a*.

Conditional distribution of the data (X, Y) given block memberships *z*:

$$\mathbb{P}(X, Y | z) = \prod_{1 \le i < j \le n} f_{z_i z_j}(X_{ij}) \prod_{i=1}^n h_{z_i}(Y_i).$$

How hard is it to recover *z* based on the observation of *X* and *Y*?

EXACT RECOVERY OF BLOCK MEMBERSHIPS

Denote by $D_t(f||g) = \frac{1}{t-1} \log \int f^t g^{1-t}$ the *Rényi divergence* of order *t* between two pdf *f* and *g*. A key information-theoretic divergence is

$$I = \min_{\substack{a,b \in [K] \\ a \neq b}} \operatorname{CH}(a,b).$$
(1.1)
where $\operatorname{CH}(a,b) = \sup_{t \in (0,1)} (1-t) \left[\sum_{\substack{c=1 \\ \text{information from the network}}}^{K} \pi_c \operatorname{D}_t (f_{bc} || f_{ac}) + \underbrace{\frac{1}{n} \operatorname{D}_t (h_b || h_a)}_{\text{information from the attributes}} \right].$

EXACT RECOVERY OF BLOCK MEMBERSHIPS

Denote by $D_t(f||g) = \frac{1}{t-1} \log \int f^t g^{1-t}$ the *Rényi divergence* of order *t* between two pdf *f* and *g*. A key information-theoretic divergence is

$$I = \min_{\substack{a,b \in [K] \\ a \neq b}} CH(a,b).$$
(1.1)

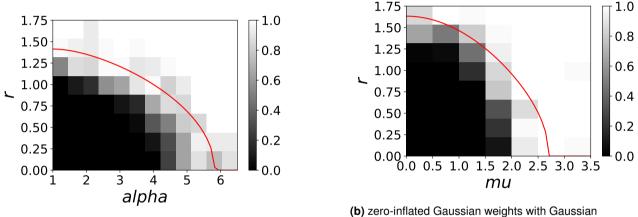
where
$$CH(a, b) = \sup_{t \in (0,1)} (1-t) \left[\sum_{\substack{c=1 \\ information from the network}}^{K} \pi_c D_t (f_{bc} || f_{ac}) + \frac{1}{n} \frac{D_t (h_b || h_a)}{n} \right].$$

Theorem 1

Suppose $K = \Theta(1)$ and $\pi_a > 0$ for all $a \in [K]$. Denote by a^*, b^* the two hardest blocks to distinguish, that is $CH(a^*, b^*) = I$. Suppose for all $t \in (0, 1)$, $\lim_{n \to \infty} \frac{n}{\log n} CH_t(a^*, b^*)$ exists and is strictly concave. Then the following holds:

- (i) exact recovery of z is information-theoretically impossible if $\lim_{n \to \infty} \frac{n}{\log n} I < 1$;
- (ii) exact recovery of z is information-theoretically possible if $\lim_{n\to\infty} \frac{n}{\log n} I > 1$.

NUMERICAL EXPERIMENTS



(a) Binary weights with Gaussian attributes

(b) zero-inflated Gaussian weights with Gaussian attributes.

Figure. Phase transition of exact recovery. Each pixel represents the empirical probability that Algorithm 1 succeeds at exactly recovering the clusters (over 50 runs), and the red curve shows the theoretical threshold. (a) n = 500, K = 2, $f_{in} = Ber(\alpha n^{-1} \log n)$, $f_{out} = Ber(n^{-1} \log n)$. The attributes are 2d-spherical Gaussian with radius ($\pm r\sqrt{\log n}$, 0) and identity covariance matrix.

(b) n = 600, K = 3, $f_{in} = (1 - \rho)\delta_0 + \rho \operatorname{Nor}(\mu, 1)$, $f_{out} = (1 - \rho)\delta_0 + \rho \operatorname{Nor}(0, 1)$ with $\rho = 5n^{-1} \log n$. The attributes are 2d-spherical Gaussian whose means are the vertices of a regular polygon on the circle of radius $r\sqrt{\log n}$.

CONCLUSION

In this presentation

Theoretical threshold for exact recovery of the community structure combines both the network and attribute information.

In the paper & poster

Algorithm that clusters sparse networks with weighted interactions and with node-attributes.

- We suppose the attributes are sampled from an *exponential family*;
- ▶ We suppose the network interactions are sampled from *zero-inflated exponential families*;
- We use the relationship between exponential families and *Bregman divergences* to derive an iterative algorithm based on *profile-likelihood maximisation*.