
1

Multi-Agent First Order Constrained

Optimization in Policy Space
Youpeng Zhao, Yaodong Yang, Zhenbo Lu, Wengang Zhou, Houqiang Li

NeurIPS 2023

Background

• MARL has wide applications in many real-life scenarios.

• However, most MARL algorithms prioritize policy optimization solely for reward

maximization, while disregarding potential negative or harmful consequences resulting

from the agents' behaviors.

• In this work, we focus on designing algorithms that learn policies which adhere to safety

constraints.
2

Challenges

• Developing safe policies for multi-agent systems poses daunting challenges.

• Two problems:

➢ The environment may suffer from non-stationarity due to simultaneously learning agents.

➢ Ensuring safety in MARL is highly intricate.

3

Safe Multi-Agent RL Formulation

• We model the problem with Constrained Markov Decision Process, which can be

described by a tuple < 𝒩,  𝒮,  𝐀,  𝑝, 𝜌0,  𝛾,  𝑅,  𝑪,  𝑐 >.

➢𝒩 means the number of agents.

➢𝒮 and 𝐀 denotes the state and action space of agents.

➢𝑝: 𝒮 × 𝐀 × 𝒮 → 𝑅 represents the probabilistic transition function.

➢𝜌0 is the initial state distribution and 𝛾 is the discounted factor.

➢𝑅 means the team reward while 𝑪 is the set of cost functions and 𝑐 denotes the corresponding

cost-constraining values.

• The objective of safe MARL problem is to maximize team reward while satisfying

safety constraints.
4

Related Work

• A recent remarkable work called MACPO addresses safe MARL problem

by developing the multi-agent trust region learning based on CPO, which

also motivates our work.

• Although providing theoretical guarantees of both monotonic improvement

in reward and compliance with cost constraints, this method involves

solving an optimization problem using very complex computation, which

also introduces nonnegligible approximation errors.

5

Method
• We propose a new algorithm to help multi-agent systems learn policies while ensuring safety

constraints. It can deduced that for agent 𝑖ℎ and the index of its cost function 𝑗, given the joint

policy 𝝅𝜽𝒌 and updated policies of previous agent sets 𝜋𝜃𝑘+1
𝑖1:ℎ−1, the new policy is obtained by

solving the following problem:

➢ max
𝜋
𝜃

𝑖ℎ
𝐸
𝑠∼𝜌𝝅𝜽𝒌

,𝑎𝑖1:ℎ−1∼𝜋
𝜃𝑘+1

𝑖1:ℎ−1 ,𝑎𝑖ℎ∼𝜋ℎ
𝑖 𝐴𝝅𝜽𝒌

𝑖ℎ 𝑠, 𝑎𝑖1:ℎ−1 , 𝑎𝑖ℎ ,

➢ 𝐽𝑗
𝑖ℎ 𝝅𝜽𝒌 + 𝐸𝑠∼𝜌𝝅𝜽𝒌

,𝑎𝑖ℎ∼𝜋𝑖ℎ 𝐴𝑗,𝝅𝜽𝒌
𝑖ℎ 𝑠, 𝑎𝑖ℎ ≤ 𝑐𝑗

𝑖ℎ , ∀𝑗 ∈ 1,⋯ ,𝑚𝑖ℎ and ഥDKL 𝜋𝜃
𝑖ℎ , 𝜋𝜃𝑘

𝑖ℎ ≤ 𝛿.

• We solve the problem using a two-step approach:

➢We first find the optimal policy update which may be in nonparameterized policy space.

➢Then we need to project the optimal policy back into parameterized policy space, which

allows for evaluation and sampling. 6

Method

• Finding the optimal policy update:

➢For agent 𝑖ℎ, we define 𝑏𝑗
𝑖ℎ = 𝑐𝑗

𝑖ℎ − 𝐽𝑗
𝑖ℎ 𝝅𝜽𝒌 , the optimal policy can be represented using

𝜋𝑖ℎ∗ 𝑎 𝑠 =
𝜋
𝜃𝑘

𝑖ℎ 𝑎 𝑠

𝑍𝜆𝑗,𝜈𝑗
𝑠
𝑒𝑥𝑝{

1

𝜆𝑗
𝜂𝝅𝜽𝒌

𝑠, 𝑎𝑖ℎ − 𝜈𝑗𝐴𝑗,𝝅𝜽𝒌
𝑖ℎ 𝑠, 𝑎𝑖ℎ } ,

➢ 𝜂𝝅𝜽𝒌
𝑠, 𝑎𝑖ℎ = 𝐸

𝑎𝑖1:ℎ−1∼𝜋
𝜃𝑘+1

𝑖1:ℎ−1 𝐴𝜋𝜃𝑘
𝑖ℎ 𝑠, 𝑎𝑖1:ℎ−1 , 𝑎𝑖ℎ

➢𝑍𝜆𝑗,𝜈𝑗 𝑠 is the partition function that ensures the policy to be a valid probability distribution.

➢𝜆𝑗 𝑎𝑛𝑑 𝜈𝑗 are solutions to an optimization problem:

min
𝜆𝑗,𝜈𝑗≥0

𝜆𝑗𝛿 + 𝜈𝑗𝑏𝑗
𝑖ℎ + 𝜆𝑗𝐸𝑠∼𝜌𝝅𝜽𝒌

,𝑎𝑖ℎ∼𝜋𝑖ℎ∗ 𝑙𝑜𝑔𝑍𝜆𝑗,𝜈𝑗 𝑠

7

Method

• Approximating the Optimal Update Policy :

➢Minimizing the loss function 𝐿 𝜃 = 𝐸𝑠∼𝜌𝝅𝜽𝒌
[𝐷𝐾𝐿 π𝜃

𝑖ℎ 𝜋𝑖ℎ∗ 𝑠 to obtain the

parameterized policy which is closest to the optimal update policy.

➢We propose that first-order methods can be adopted in this process.

∇𝜃𝐿 𝜃 = 𝐸𝑠∼𝜌𝝅𝜽𝒌
[∇𝜃𝐷𝐾𝐿 π𝜃

𝑖ℎ 𝜋𝑖ℎ∗ 𝑠

=∇𝜃𝐷𝐾𝐿(π𝜃
𝑖ℎ||πθ𝑘

𝑖ℎ)-
1

𝜆𝑗
𝐸
𝑎∼𝜋

𝜃𝑘

𝑖ℎ

∇𝜃𝜋𝜃
𝑖ℎ 𝑎 𝑠

𝜋
𝜃𝑘

𝑖ℎ 𝑎 𝑠
𝜂𝝅𝜽𝒌

𝑠, 𝑎𝑖ℎ − 𝜈𝑗𝐴𝑗,𝝅𝜽𝒌
𝑖ℎ 𝑠, 𝑎𝑖ℎ

8

Method

• Overall Implementation

➢ Solve 𝜆𝑗 𝑎𝑛𝑑 𝜈𝑗

➢ 𝜆𝑗 is similar to temperature term and we set it as a fixed value.

➢ 𝜈𝑗 can be obtained by
𝜕𝐿 𝜋𝑖ℎ∗,𝜆𝑗,𝜈𝑗

𝜕𝜈𝑗
= 𝑏𝑗

𝑖ℎ − 𝐸𝑠∼𝜌𝝅𝜽𝒌
,𝑎𝑖ℎ∼𝜋𝑖ℎ∗ 𝑎 𝑠 𝐴𝑗,𝝅𝜽𝒌

𝑖ℎ 𝑠, 𝑎𝑖ℎ

• Algorithm Outline

➢For every iteration, start with joint policy 𝝅𝜽𝒌 and generate trajectories using it.

➢Estimate the C-returns and advantage functions.

➢Making use of the collected data to obtain 𝜈𝑗.

➢Update value and policy networks using the derived equations.

9

Experiments

• Experiment benchmarks

• Performance on Safe MAIG

10

Experiments

• Performance on Safe Multi-agent MuJoCo

11

Experiments

• Efficiency Analysis

➢Our algorithm brings apparent improvement in the computational efficiency and memory

usage.

12

