

Marcus(Gehua) Ma¹, Runhao Jiang¹,

Rui Yan², and Huajin Tang^{1,*}

¹College of Computer Science and Technology, Zhejiang University

²College of Computer Science and Technology, Zhejiang University of Technology

Author: Project link:

Computation modeling of sensory circuits

- > Hypotheses, in-silico validation, neural information processing mechanisms ...
- ➤ Building AI algorithms (CNNs, Attention ...)
- ≻ Brain-machine interface, neuroprosthetics ...

Image source: Jacob Granley 2022

- 1) Yamins, Daniel LK, and James J. DiCarlo. Nature Neuroscience, 2016.
- ② Doerig, Adrien, et al. *Nature Reviews Neuroscience*, 2023.
- ③ Turner, Maxwell H., et al. *Nature Neuroscience*, 2019.

Problem to solve: A computational model for the

natural stimuli-neural response mapping

Challenge: these neural circuits involve numerous complex nonlinear processes.

Solution: Artificial neural networks

Image source: E. Batty, 2017

Image source: Manuel Molano-Mazon, 2018

Image source: L. McIntosh, 2016

Limit 1: Lossy Target

Most of the existing works focus on simulating the firing rates directly.

Firing rates *only characterize some aspects* of the original spike train, as a trial-averaged spike statistic.

Image source: Rimjhim Tomar, 2019

Motivation

Limit 2: Unnatural Paradigm

Pre-defined fixed-length temporal filters:

- Bio-unrealistic
- Introducing more hyper-params
- Inflexible
 - Natural paradigm

```
long stimuli
sequences
response
sequence
```

Unnatural paradigm

test seq. length*: <u>fixed</u>, pre-difined at the model learning phase

Problem:

Modeling neural response to natural stimuli (visual stimuli in this work)

Formulation:

A sequence of visual stimuli: $\mathbf{x} = (\mathbf{x}_t)_{t=1\cdots T}, \mathbf{x}_t \in \mathbb{R}^{\dim[\mathbf{x}_t]}$

Neural population sequence (as our model's target): $\mathbf{y} = (\mathbf{y}_t) \in \{0, 1\}^{T \times \dim[\mathbf{y}_t]}$, $\dim[\mathbf{y}_t]$ = number of RGCs Latent neural codes, latent neural factors: $\mathbf{z} = (\mathbf{z}_t)$

At time t:

Chalk, Matthew, Olivier Marre, and Gašper Tkačik. PNAS, 2018.
 Alemi, Alexander A., et al. ICLR, 2017.

To Tackle Limit 1 (lossy target)

1 Akbarian, Amir, et al. Nature Communications, 2021.

② Gregor, Karol, et al. ICML, 2015.

To Tackle Limit 2 (unnatural paradigm)

② Whittington, James CR, et al. Cell, 2020.

TeCoS-LVM Models Accurately Fit Real Spike Activities and Statistics

Figure 1. Firing rate prediction visualizations.

Figure 2. Firing rate prediction CC score comparison.

Experimental Results 2

TeCoS-LVM Models Accurately Fit Real Spike Activities and Statistics

Figure 1. Spike train prediction rasters.

Figure 2. Spike train dissimilarity score comparison.

Figure 3. Multi-trial prediction rasters of an example neuron.

Experimental Results 3

Figure 1. Spike autocorrelograms. Firing ratetargeted approaches loss spike autocorrelation information. Figure 2. Learned TeCoS-LVM models generalize to longer time scales.

TECOS-LVM Noisy

r value:

-0.6930

0.5

SSIM

0.9

0.2-

0.1

0.0

0.1

TECOS-LVM

r value:

-0.7188

0.5

SSIM

0.9

Cosine dist.

0.2

0.1

0.0↓ 0.1

Table 2: Ablation results of using spiking hidden neurons. An \uparrow indicates that the higher the value, the better, while a \downarrow suggests the opposite. Results reported are averaged across multiple trials.

		Spiking hidden units	CC (†)	Spike Train Dissim. (↓)	SPIKE (↓)	Victor-Purpura (↓)	van Rossum (↓)
Movl Rerl	TeCoS-LVM	Yes No	0.579 0.254	371.057 850.418	0.124 0.259	12.835 45.117	127.346 3416.557
	TeCoS-LVM Noisy	Yes No	0.728 0.653	354.989 370.099	0.155 0.167	14.024 14.805	238.614 291.706
Mov2 Ret2	TeCoS-LVM	Yes No	0.616 0.471	1003.489 1273.267	0.123 0.180	22.666 35.080	574.298 1890.910
	TeCoS-LVM Noisy	Yes No	0.822 0.748	1021.384 1078.830	0.153 0.159	28.441 29.249	1135.805 1144.087

Project link (in progress):

