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Federated Learning

• Federated Learning (FL) is a method for 
training AI models from distributed client 
devices.

• Models are trained on each client, and only 
parameters are shared with the server to 
improve the global model.

• Because FL do not exchange the client data, an 
organization can collaborate without exposing
sensitive information and compromising data 
privacy.
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FL Objective

• In FL objective, the global objective 𝒥(𝑤) at server can be represented as a linear 
combination of local objectives 𝒥𝑚(𝑤) at each client. 𝑤 is the model parameter. 

• Given each client has a data 𝐷𝑚, the local object is usually defined as the negative 
log-likelihood ℓ(𝐷𝑚; 𝑤) = −log 𝑝(𝑦𝑚|𝑥𝑚, 𝑤) on the m-th client’s dataset.

• 𝑔𝑚 is a weight proportional to the size of the local dataset (e.g., 𝐷𝑚 /|𝐷|) 
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• FedAvg [1] is a basic FL approach to 
find an optimal model, proposed by 
McMahan et al. in 2017.

• It iteratively updates the global model 
parameter ഥw with the average of local 
parameter 𝑤m weighted by each 
client’s data size.

• However, conventional FL has 
difficulties in the real-world application.

[1] McMahan et al., Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTAT, 2017



Challenge in FL with Non-IID clients 
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IID clients: The conventional FL algorithm, (e.g., 
FedAVG) could convergence well when the data 
from different clients is independently and 
identically distributed (IID).  

Non-IID data: Due to the differences in preferences, 
locations, and usage habits of clients, the private 
data are usually non-IID. In this case, the local model 
learned from each client can diverge, and thus 
learning an optimal global model could fail. 



Other Challenges in FL

• Limited or Unbalanced data: When the data available on each local device is limited, the model 
overfitting occurs, resulting in poor generalization to unseen clients.

• Sparse participation: In practice, the total number of clients M can be extremely large, while 
communication between the server and the clients can be intermittent or unreliable. This creates 
the challenge of inconsistent training due to a small subset of participating clients in each round 
of communication.

• Communication cost: FL optimization requires frequent communication between local devices 
and the central server to exchange model parameters. This process is slow and could introduce 
additional privacy concerns. Therefore, reducing model size is also an important area of research.



Motivation

• Our research goal was to mitigate these major challenges in FL (such as 
non-IID clients, data imbalance, few-shot learning, sparse client 
participation, and communication costs) simultaneously.

• How do we address these issues?
- We introduce a new Bayesian FL framework, called Meta-Variational Dropout.

- This framework includes, 
1) Variational Inference for FL
2) Conditional Variational Dropout approach based on Hypernetwork
3) Sparse prior, enabling model compression 
4) Model aggregation rule based on parameter uncertainty



Bayesian Federated Learning

Bayesian focuses on learning local posteriors 
p wm Dm in each client’s device, then we 
utilizes those local posteriors to infer the global 
posterior p w D = p w D1, . . . , DM .

In other words, Bayesian approach employes a 
distribution over the model instead of a fixed-
point estimation of model parameter. 
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Variational Inference for FL

❖ Given 𝑀 clients, each of which has a dataset 𝐷𝑚 = 𝑥𝑖
𝑚, 𝑦𝑖

𝑚
𝑖=1
|𝐷𝑚|

,  an evidence lower-bound 
(ELBO) objective over all the distributed client’s dataset can be defined as

max
𝜙

ℒ𝐸𝐿𝐵𝑂(𝜙) = 

𝑚=1

𝑀

𝑔𝑚{𝔼𝑞(𝑤𝑚;𝜙) log 𝑝 𝑦𝑚 𝑥𝑚, 𝑤𝑚 − 𝐾𝐿(𝑞(𝑤𝑚; 𝜙)||𝑝(𝑤𝑡))}

• 𝑞 𝑤𝑚 ; ∅ is a variational posterior (or probability distribution) over 𝑤𝑚

• 𝑝 𝑦𝑚 𝑥𝑚, 𝑤𝑚 represents a likelihood model based on a neural network (NN) on each 𝑚-th

client’s data, and 𝑤𝑚 is a client-specific NN parameter

• 𝑝 𝑤𝑚 is a prior distribution that acts as a regularizer for the 𝑞 𝑤𝑚 ; ∅

• 𝑔𝑚 is the local weight is proportional to the size of the local dataset (e.g., 𝐷𝑚 /|𝐷|)

• 𝑞 𝑤𝑚 ; 𝜙 ≈ 𝑝 𝑤𝑚 | 𝐷𝑚 .



Posterior model

❖ MetaVD extends the posterior model of Variational Dropout (VD) [2] by introducing a 

hypernetwork ℎ𝜑 (and embedding 𝑒𝑚) to predict a client-specific dropout variable 𝛼𝑚. 

• The 𝜃 is (a typically fixed) neural network parameter that is a globally shared across clients.

• The dropout technique switches off the neurons of a deep learning model with a certain 
probability to sample a neural network with a different structure each time. 

• This has a similar effect to ensemble learning and improves generalization performance by 
reducing the dependence between neurons and prevent model overfitting during training.



Prior

❖MetaVD adopted the hierarchical prior [3] to enforce a sparsity on the global 
weight.  The KL regularization terms in the ELBO for FL is defined as 

• (1) The two-level structure in a hierarchical system can generate a much more 
complex distribution, expanding the potential solution spaces for variety of 
different clients' models in the FL environment. 

• (2) This has been proven effectiveness in network regularization and scarification. 

• The same hierarchical prior is uniformly applied across all 1...M clients to ensure 
the Bayesian posterior aggregation rule.



Bayesian Posterior Aggregation

• To update the global NN parameter, we first assume the Bayesian posterior 
aggregation rule,

• Since we have approximated the conditional posterior as Gaussian Dropout, we 
can denote  the global posterior as a product of local Gaussians,

❖MetaVD derives an exact aggregation rule to compute a maximum a posterior 
(MAP) solution of the parameter as



Combination with MAML/Reptile

• MetaVD is compatible with several meta-learning based PFL 
algorithms such as Reptile, MAML, PerFedAvg.

• Unlike conventional meta-learning algorithms, MetaVD changes the 
mode of initialization parameters for each client.

• MetaVD prevents overfitting of local adaptation in meta-learning 
based based PFL approach.



Overall FL with MetaVD

(a) Initialization at Server: (1) MetaVD estimates client specific dropout variable 𝛼𝑚 using a hypernetwork ℎ𝜑 and embedding vector 𝑒𝑚. (2) 

Apply dropout to Global NNs' weight 𝜃 and send {𝜃, 𝛼𝑚} to each client -> reduce communication cost through dropout pruning. 

(b) Optimization at each Client: A client receives personalized model, and train the global parameter and dropout rates using the local data, 

then send them back to server.  (Here, we can also utilize the optimization based meta-learning approach, Reptile or MAML).

(c) Aggregation at Server: When merging models learned from multiple local clients, update the global weight 𝜃 inversely proportional to the 

dropout rate learned from each client (merging models reflecting the uncertainty of weight) -> lead to better optimum.



Experiment



Classification with Non-IID data

Dirichlet Distribution was used to control the diversity level of FL client data distribution 
(e.g., size, degree of non-IID of class, etc.).



Classification with Non-IID data

• Tested at different Non-IID levels utilizing FL Benchmark datasets (CIFAR-100 and CIFAR-10). 

• When the MetaVD is combined with traditional FL algorithms (FedAvg) or meta-learning based 
algorithms (Reptile, MAML, PerFedAvg), it shows a significant improvement in classification 
accuracy. 

• In addition to the test data, accuracy was significantly improved for out-of-distribution (OOD) 
clients that were never seen during training.



Uncertainty Calibration

• To measure how well the FL model's predictions match 
the actual probability values, we analyzed the reliability 
diagram for the CIFAR-100 dataset.

• The reliability diagram measures the proportion of true-
positive samples in each probability interval. The lower 
the bias of the model, the closer to the diagonal line it is 
drawn. 

• As a result of the experiment, we observed that the 
reliability of most baselines such as Reptile and MAML 
improved when MetaVD was applied.



Uncertainty Calibration (2)

• ECE score represents the average difference 
between the model predictions and the 
actual probability, while MCE score 
represents the maximum difference. 

• We observe a much lower error when 
applying MetaVD. This indicates that MetaVD
improves the reliability of model predictions.



Client Participation Degrees

• We used the FEMNIST dataset to measure the prediction accuracy of the model by adjusting 
the percentage (%) of clients participating in training (s = 0.2, 0.1, 0.05).  

• In all cases, the MetaVD improved prediction results of baseline even with the sparse client 
participation degrees.



Model Compression

• When applying MetaVD, the dropout 
probability per model weight is learned.

• When learning FL, weights with dropout rates 
above 0.8 are pruned and not exchanged 
between server and client (+DP), and the 
final prediction performance is not 
significantly reduced.



Conclusion

• MetaVD is a novel Bayesian meta-learning approach to FL extending Variational Dropout.

• Hypernetwork Utilization: MetaVD predicts dropout rates for each NN parameter of each client, 
supporting model personalization and adaptation in FL with non-IID and limited data.

• Uncertainty in PFL aggregation: Variational dropout uncertainty is firstly utilized as a principled 
Bayesian aggregation rule in PFL, improving training convergence and prevent model overfitting.

• OOD Performance: MetaVD has been tested on various FL scenarios. It prevents model over-
fitting and significantly improves prediction performance over the OOD clients. In addition, it has 
the effect of compressing the model, which reduces communication costs.

• Generic Compatibility: MetaVD is a highly versatile methodology. It works with any existing meta-
learning algorithms to avoid overfitting. The application in broader domains (NLP, RL, etc.) is an 
interesting future work.
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