

CONTRIBUTION

- \succ We approach efficient pre-trained model adaptation from a novel perspective by exploring the reusability of adaptation parameters, which goes beyond existing works that primarily focus on the lightweight design of adapter structures.
- > We introduce the Adapter Re-Composing (ARC) strategy, which shares parameters across layers and utilizes lower-dimensional re-composing coefficients to create layer-adaptive adapters, keeping a linear increase in parameter size with the number of layers.
- > Through extensive experiments on various Vision Transformer variations and numerous downstream tasks, we show that our method achieves highly competitive transfer learning performance.
- \triangleright Our codes is available at:

https://github.com/DavidYanAnDe/ARC

Efficient Adaptation of Large Vision Transformer via Adapter Re-Composing 1 College of Information and Control Engineering, Xi'an University of Architecture and Technology 2 School of Computer Science, Northwestern Polytechnical University

 $\mathbf{X}_{\text{emb}} = \left[\vec{x}_{\text{cls}}^{\text{T}}; \mathbf{X}_{\text{patches}} \mathbf{W} \right] + \mathbf{X}_{\text{pos}}$ We apply adapter by sharing the parameter $\mathbf{X}^{(l)'} = \mathsf{MHA}\left(\mathsf{LN}(\mathbf{X}^{(l-1)})\right) + \mathbf{X}^{(l-1)}$ Adapters are shared between each layer. $\mathbf{X}^{(l)} = FFN\left(LN(\mathbf{X}^{(l)\prime})\right) + \mathbf{X}^{(l)\prime}$ (adapter are independent for MHA and FFN) $\mathbf{X}_{h}^{(l)\prime} = \mathrm{AH}_{h}\left(\mathbf{X}_{\mathrm{norm}}^{(l-1)}\right)$ $= \operatorname{softmax} \left(\frac{\left(\mathbf{X}_{\operatorname{norm}}^{(l-1)} \mathbf{W}_{q}^{(l)} \right) \left(\mathbf{X}_{\operatorname{norm}}^{(l-1)} \mathbf{W}_{k}^{(l)} \right)^{\mathrm{T}}}{D_{v}^{(l)}} \right) \mathbf{X}_{\operatorname{norm}}^{(l-1)} \mathbf{W}_{v}^{(l)}$ $\mathbf{X}^{(l)'} = MHA(\mathbf{X}_{norm}^{(l-1)}) = [AH_1(\mathbf{X}_{norm}^{(l-1)}), \dots, AH_M(\mathbf{X}_{norm}^{(l-1)})]\mathbf{W}_o^{(l)}$ $\mathbf{X}^{(l)} = FFN\left(\mathbf{X}_{norm}^{(l)'}\right) = GELU\left(\mathbf{X}_{norm}^{(l)'}\mathbf{W}_{1}^{(l)}\right)\mathbf{W}_{2}^{(l)}$

Adapter Re-Composing method

among up and down matrices as: $W_{up} = (W_{down})^T$

$$\begin{aligned} \mathbf{X}_{\text{out}} &= \text{ARC}(\mathbf{X}_{\text{in}}) = \mathbf{X}_{\text{in}} \mathbf{W}_{\text{down}} \mathbf{C}^{(l)} \mathbf{W}_{\text{up}} + \mathbf{X}_{\text{in}} \\ \mathbf{W}_{1}^{(l)\prime} &= \left(\mathbf{W}_{\text{down}} \mathbf{C}^{(l)} \mathbf{W}_{\text{up}} + \mathbf{I} \right) \mathbf{W}_{1}^{(l)} \\ \mathbf{X}^{(l)\prime} &= \text{MHA} \left(\text{ARC}_{\text{MHA}} \left(\text{LN}(\mathbf{X}^{(l-1)}) \right) \right) + \mathbf{X}^{(l-1)} \\ \mathbf{X}^{(l)} &= \text{FFN} \left(\text{ARC}_{\text{FFN}} \left(\text{LN}(\mathbf{X}^{(l)\prime}) \right) \right) + \mathbf{X}^{(l)\prime} \\ \mathbf{X}^{(l)} &= \text{GELU} \left(\text{ARC}_{\text{FFN}} \left(\mathbf{X}^{(l)\prime} \right) \mathbf{W}_{1}^{(l)} \right) \mathbf{W}_{2}^{(l)} \end{aligned}$$

RESULT

Dataset Method	CUB-200-2011	NABirds	Oxford Flowers	Stanford Dogs	Stanford Cars	Mean	Params.(M)
Full fine-tuning	87.3	82.7	98.8	89.4	84.5	88.5	85.98
Linear probing	85.3	75.9	97.9	86.2	51.3	79.3	0.10
Adapter [7]	87.1	84.3	98.5	89.8	68.6	85.7	0.41
Bias [42]	88.4	84.2	98.8	91.2	79.4	88.4	0.28
VPT-Shallow [6]	86.7	78.8	98.4	90.7	68.7	84.6	0.25
VPT-Deep [6]	88.5	84.2	99.0	90.2	83.6	89.1	0.85
LoRA [24]	88.3	85.6	99.2	91.0	83.2	89.5	0.44
SSF* [9]	89.5	85.7	99.6	89.6	89.2	90.7	0.39
SSF [9]	82.7	85.9	98.5	87.7	82.6	87.5	0.39
ARC_{att}	88.4	85.0	99.4	90.1	82.7	89.1	0.15
ARC	88.5	85.3	<u>99.3</u>	91.9	85.7	90.1	0.20

				Nat	ural					SI	oecializ	ed					St	ructur	ed					
Dataset Method	CIFAR-100	Caltech101	DTD	Flowers102	Pets	HNAS	Sun397	Mean	Camelyon	EuroSAT	Resisc45	Retinopathy	Mean	Clevr-Count	Clevr-Dist	DMLab	KITTI-Dist	dSpr-Loc	dSpr-Ori	sNORB-Azim	sNORB-Ele	Mean	Mean Total	Params.(M)
Full fine-tuning	68.9	87.7	64.3	97.2	86.9	87.4	38.8	75.9	79.7	95.7	84.2	73.9	83.4	56.3	58.6	41.7	65.5	57.5	46.7	25.7	29.1	47.6	65.6	85.8
Linear probing	63.4	85.0	63.2	97.0	86.3	36.6	51.0	68.9	78.5	87.5	68.6	74.0	77.2	34.3	30.6	33.2	55.4	12.5	20.0	9.6	19.2	26.9	52.9	0.04
Adapter [7]	74.1	86.1	63.2	97.7	87.0	34.6	50.8	70.5	76.3	88.0	73.1	70.5	77.0	45.7	37.4	31.2	53.2	30.3	25.4	13.8	22.1	32.4	55.8	0.27
Bias [42]	72.8	87.0	59.2	97.5	85.3	59.9	51.4	73.3	78.7	91.6	72.9	69.8	78.3	61.5	55.6	32.4	55.9	66.6	40.0	15.7	25.1	44.1	62.1	0.14
VPT-Shallow [6]	77.7	86.9	62.6	97.5	87.3	74.5	51.2	76.8	78.2	92.0	75.6	72.9	79.7	50.5	58.6	40.5	67.1	68.7	36.1	20.2	34.1	47.0	64.9	0.11
VPT-Deep [6]	78.8	90.8	65.8	98.0	88.3	78.1	49.6	78.5	81.8	96.1	83.4	68.4	82.4	68.5	60.0	46.5	72.8	73.6	47.9	32.9	37.8	55.0	69.4	0.60
LoRA [24]	65.3	87.9	69.4	98.7	90.7	82.4	53.4	78.2	82.8	94.8	82.5	75.0	83.8	77.6	64.7	45.8	79.0	73.3	44.7	26.3	38.2	56.2	70.1	0.29
SSF* [9]	69.0	92.6	75.1	99.4	91.8	90.2	52.9	81.6	87.4	95.9	87.4	75.5	86.6	75.9	62.3	53.3	80.6	77.3	54.9	29.5	37.9	59.0	73.1	0.24
SSF [9]	58.0	89.8	70.5	98.9	90.2	90.5	52.9	78.7	86.7	95.2	86.4	75.4	85.9	68.2	61.0	52.8	80.7	77.3	48.5	27.6	31.1	55.9	70.6	0.24
ARC_{att}	70.1	90.5	70.5	98.8	90.8	88.6	53.6	80.4	84.6	95.5	86.6	75.5	85.6	79.0	65.6	48.6	81.3	75.1	48.7	29.1	39.6	58.4	72.2	0.08
ARC	72.2	90.1	72.7	99. 0	91.0	91.9	54.4	81.6	84.9	95.7	86.7	75.8	85.8	80.7	67.1	48.7	81.6	79.2	51.0	31.4	39.9	60.0	73.4	0.13

ImageNet-21k as backbone.

		(a) Vi
	Natural (7)	Specializ
Full fine-tuning	74.7	83.
Linear probing	70.9	69.
Adapter [7]	68.6	73.:
Bias [37]	70.5	73.
VPT-Shallow [6]	78.7	79.
VPT-Deep [6]	82.5	83.
LoRA [24]	81.4	85.
ARC	82.3	85.

backbone.

	Natural (7)	Specialized (4)	Structed (8)	Mean Total	Params.
Full fine-tuning	79.1	86.2	59.7	72.4	86.8
Linear probing	73.5	80.8	33.5	58.2	0.05
MLP-4 6	70.6	80.7	31.2	57.7	4.04
Partial 6	73.1	81.7	35.0	58.9	12.65
Bias 42	74.2	80.1	42.4	62.1	0.25
VPT-Shallow 6	79.9	82.5	37.8	62.9	0.05
VPT-Deep 6	76.8	84.5	53.4	67.7	0.22
ARC	79.0	86.6	59.9	72.6	0.27

(a). Comparison of ARC with baselines and state-of-the-art efficient adaptation methods on five FGVC datasets. All methods utilize ViT-B/16 pre-trained on ImageNet-21k as the backbone.

(b). Comparison of ARC with baselines and state-of-the-art efficient adaptation methods on VTAB-1k benchmark. All methods utilize ViT-B/16 pre-trained on ImageNet-21k as the backbone

(c). Performance comparison on VTAB-1k using ViT-Large and ViT-Huge pre-trained on

I-Large

(b) ViT-Huge ed (4) Structed (8) Mean Total Params Natural (7) Specialized (4) Structed (8) Mean Total Params Full fine-tuning 303.4 79.0 26.1 52.7 67.9 Linear probing PT-Shallow [6] 83.3 77.1 83.5 69.3 55.4 0.74LoRA [24] 79.1 84.8

(d). Performance comparison on VTAB-1k using Swin-Base pre-trained on ImageNet-21k as