

Microsoft

Text-to-Image Diffusion Models

Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin Bao, Shaozhe Hao, Lu Yuan, Kwan-Yee K. Wong

Introduction - Overview

Uni-ControlNet: A <u>controllable diffusion model</u> that allows for the simultaneous utilization of different local controls and global controls in a <u>composable</u> manner within <u>one single model</u>

A motorcycle on the mountains

A girl in the room, oil painting

Introduction - Comparison

	Fine-tuning	Composable Control	Fine-tuning Cost	Adapter Number
Composer	×	✓	_	-
ControlNet	✓	v	N	N
GLIGEN	~	×	N	N
T2I-Adapter	~	v	N(+1)	N(+1)
Uni-ControlNet (Ours)	v	✓	2	2

Comparisons of different controllable diffusion models

Uni-ControlNet

- 1. Only requires the fine-tuning of adapters upon frozen pre-trained models
- 2. Only requires 2 adapters, regardless of the number of local or global controls used
- 3. Great composable control of different conditions

Method - Framework

We design two adapters for local and global controls respectively

The input of the *i*- *th* block in the decoder in the base model

$$\begin{cases} concat(m, f_j) \\ concat(g_{i-1}, f_j) \end{cases} \implies \begin{cases} concat(m+m', f_j + zero(f_j')) & where \quad i = 1, \quad i+j = 13. \\ concat(g_{i-1}, f_j + zero(f_j')) & where \quad 2 \le i \le 12, \quad i+j = 13. \end{cases}$$

m is the output of the middle block, f_i and g_i denote the output of the i- th block in the encoder and decoder of base model

m', f' represents the output of the corresponding local control adapter

Method - Local Control Adapter

Multi-Scale Condition Injection

4 Steps

1. Fix the weights of main SD and copy the structures

and weights of the encoder and middle block

- 2. Concatenate all the local conditions in the channel dimension
- 3. Use a feature extractor to extract condition features at different resolutions
- 4. Inject the extracted features into the copied encoder in different scale through FDN

Method - Global Control Adapter

Serve as the input to all cross-attention layers in both main SD model and control adapters

Method - Training and Inference

Training: Fine-tune the local adapter and global adapter separately

Inference: Directly combine the 2 adapters together without further joint fine-tuning

Dropout Strategy:

Use a predefined probability to randomly dropout each condition

Meanwhile, keep an additional probability to deliberately keep or drop all conditions

For the dropped conditions, the value of the corresponding input channels is set to 0

Experiment - Settings

Conditions:

Canny edge, MLSD edge, HED boundary, Sketch, Openpose, Midas depth, Segmentation mask Content (CLIP image embedding)

Training: Randomly sample 10 million text-image pairs from the LAION dataset and fine-tune the

adapters for 1 epoch. We use the AdamW optimizer with a learning rate of 10^{-5} .

Inference: Use DDIM for sampling, with the number of timesteps set to 50 and the CFG scale set to 7.5

Experiment - Generation Results

A man holding a white board

Condition-1

题

Condition-2 Sample Condition-1

Condition-2

Sample

Condition-1

Condition-2

Sample

Experiment - Qualitative Comparison

62

Single Condition

ControlNet, GLIGEN, T2I-Adapter

Uni-ControlNet

Stormtrooper's lecture in the forest

Condition-1 Condition-2

Multi-ControlNet CoAdapter

Ours

Condition-1 Co

Condition-2 Multi-ControlNet

A nice car on the country road

CoAdapter

Ours

Multi-Conditions

Multi-ControlNet, CoAdapter

Uni-ControlNet

Experiment - Quantitative Comparison

Validation Set: COCO2017, **Resolution:** 512 × 512, **Number of Generated Samples:** 5k

As each image has multiple captions in COCO2017, we randomly select one caption per image

	Canny	MLSD	HED	Sketch	Pose	Depth	Segmentation	Style\Content		
ControlNe	et 18.90	31.36	26.59	22.19	27.84	21.25	23.08	31.17		
GLIGEN	24.74	-	28.57	-	24.57	21.46	27.39	25.12		
T2I-Adapte	er 18.98	-	-	18.83	29.57	21.35	23.84	28.86		
Ours	17.79	26.18	17.86	20.11	26.61	21.20	23.40	23.98		
Table 3: Quantitative evaluation of the controllability. The best results are in bold .										
	Canny	MLSD	HED	Sketch	Pose	Depth	Segmentatio	n Style\Content		
	(SSIM)	(SSIM)	(SSIM)	(SSIM)	(mAP)	(MSE)) (mIoU)	(CLIP Score)		
ControlNet	0.4828	0.7455	0.4719	0.3657	0.4359	87.57	0.4431	0.6765		
GLIGEN	0.4226	-	0.4015	-	0.1677	88.22	0.2557	0.7458		
T2I-Adapter	0.4422	-	-	0.5148	0.5283	89.82	0.2406	0.7078		
Ours	0.4911	0.6773	0.5197	0.5923	0.2164	91.05	0.3160	0.7753		

Table 2: FID on different controllable diffusion models. The best results are in **bold**.

Thank you !

https://arxiv.org/abs/2305.16322

https://github.com/ShihaoZhaoZSH/Uni-ControlNet