# Efficient Activation Function Optimization through Surrogate Modeling

#### Garrett Bingham and Risto Miikkulainen garrett@gjb.ai





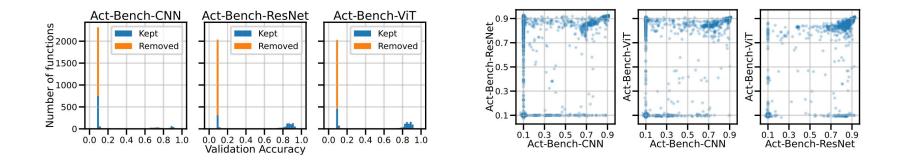


## Components of AQuaSurF

- Benchmark Datasets (similar to NAS-Bench-101, etc.)
  - Precomputed results
  - Easy to experiment with different features and search algorithms
- Representation Learning
  - What features predict activation function performance?
- Surrogate and Search Algorithm Design
  - How can better activation functions be found efficiently?
- Improving Performance on Real-World Tasks
  - New datasets, architectures, and search spaces.

#### **Benchmark Datasets**

- 2,913 unique activation functions evaluated on three tasks
  - All-CNN-C on CIFAR-10 (Act-Bench-CNN)
  - ResNet-56 on CIFAR-10 (Act-Bench-ResNet)
  - MobileViTv2-0.5 on Imagenette (Act-Bench-ViT)



#### **Features and Distance Metrics**

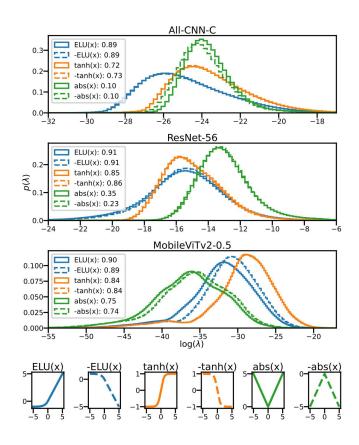
• Fisher information matrix (FIM) eigenvalues

$$\mathbf{F} = \underset{\mathbf{x} \sim Q_{\mathbf{x}} \\ \mathbf{y} \sim R_{\mathbf{y} \mid f(\mathbf{x}; \boldsymbol{\theta})}}{\operatorname{E}} \left[ \nabla_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{y}, f(\mathbf{x}; \boldsymbol{\theta})) \nabla_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{y}, f(\mathbf{x}; \boldsymbol{\theta}))^{\top} \right]$$

$$d(f_\phi,f_\psi)=\sum_{l=1}^L rac{W_1(\mu_l,
u_l)}{w_l}$$

• Activation function outputs

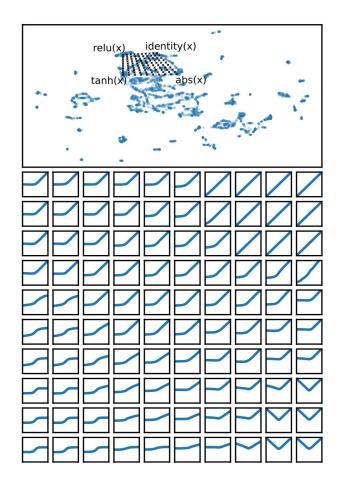
$$d(f_{\phi}, f_{\psi}) = \sqrt{\frac{\sum_{i=1}^{n} (\phi(x_i) - \psi(x_i))^2}{n}}, \quad x \sim \mathcal{N}(0, 1)$$



## Low-Dimensional Embedding

• The features and distance metrics are used to map activation functions to a low-dimensional embedding space

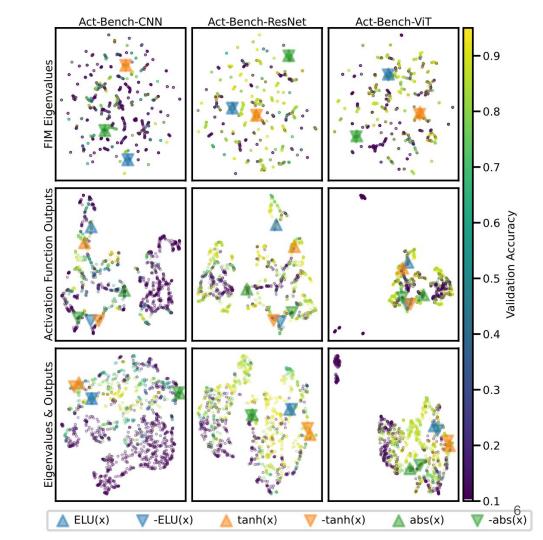
• UMAP (similar to t-SNE) learns an informative embedding and smoothly interpolates between activation functions



## Learning a Surrogate

 Unsupervised UMAP embeddings show the predictive power of the features.

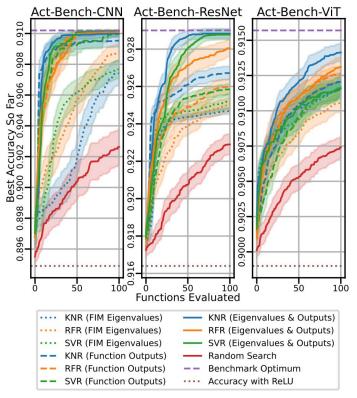
 Combining the two features (eigenvalues & outputs) provides the most powerful embedding



#### Searching on the Benchmark Tasks

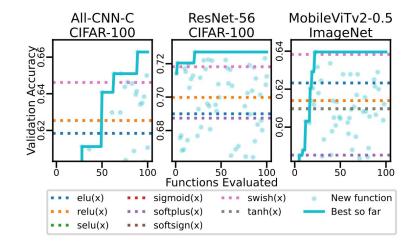
- Three algorithms were evaluated
  - Weighted k-nearest regression with k = 3 (KNR)
  - Random forest regression (RFR)
  - Support vector regression (SVR)

- The algorithms utilized three kinds of features
  - FIM eigenvalue
  - Activation function outputs
  - Both FIM eigenvalues and function outputs



### Searching on New Tasks

- The best search algorithm (KNR) scales to more challenging problems
  - CIFAR-100 and ImageNet datasets
  - A larger search space with 425,896 unique functions



| All-CNN-C on CIFAR-100                                                                                                      |                                                                                                     | ResNet-56 on CIFAR-100                                                                                        |                                                                                                     | MobileViTv2-0.5 on ImageNet                                                                                                                                                                                                                  |                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| HardSigmoid(HardSigmoid( $x$ )) $\cdot$ ELU( $x$ )<br>$\sigma$ (Softsign( $x$ )) $\cdot$ ELU( $x$ )<br>Swish( $x$ )/SELU(1) | <b>0.6990</b><br>0.6950<br>0.6931                                                                   | $\frac{\text{Swish}(-2x)}{\text{SELU}(\sinh(e^{\arctan(x)}-1))}$ $x \cdot \operatorname{erfc}(\text{ELU}(x))$ | <b>0.7469</b><br>0.7458<br>0.7419                                                                   | $ \begin{array}{c} -x \cdot \sigma(x) \cdot \operatorname{HardSigmoid}(x) \\ \operatorname{ELU}(\operatorname{Swish}(-x)) \\ \operatorname{Swish}(x) \cdot \operatorname{erfc}(\operatorname{bessel}_{-}\operatorname{i0e}(x)) \end{array} $ | <b>0.6396</b><br>0.6394<br>0.6336                                                                    |
| ELU<br>ReLU<br>SELU<br>sigmoid<br>Softplus<br>Softsign<br>Swish<br>tanh                                                     | $\begin{array}{c} 0.6312\\ 0.6897\\ 0.0100\\ 0.0100\\ 0.6563\\ 0.2570\\ 0.6913\\ 0.3757\end{array}$ | ELU<br>ReLU<br>SELU<br>sigmoid<br>Softplus<br>Softsign<br>Swish<br>tanh                                       | $\begin{array}{c} 0.7411\\ 0.7348\\ 0.6967\\ 0.5766\\ 0.7397\\ 0.6624\\ 0.7401\\ 0.6754\end{array}$ | ELU<br>ReLU<br>SELU<br>sigmoid<br>Softplus<br>Softsign<br>Swish<br>tanh                                                                                                                                                                      | $\begin{array}{c} 0.6233\\ 0.6139\\ 0.6096\\ 0.5032\\ 0.5853\\ 0.5710\\ 0.6383\\ 0.6098 \end{array}$ |

#### **Transfer Across Tasks**

• The best activation functions discovered in the three searches improve performance in a new task.

• ResNet-50 top-1 accuracy on ImageNet, median of three runs.

• Eight of the nine functions outperform ReLU.

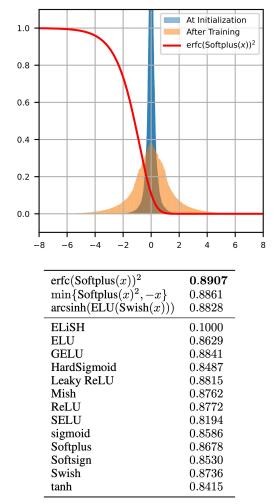
| $-x \cdot \sigma(x) \cdot \text{HardSigmoid}(x)$                 | 0.7776 |
|------------------------------------------------------------------|--------|
| Swish(x)/SELU(1)                                                 | 0.7771 |
| $Swish(x) \cdot erfc(bessel_i0e(x))$                             | 0.7755 |
| $\sigma(\operatorname{Softsign}(x)) \cdot \operatorname{ELU}(x)$ | 0.7734 |
| $\text{SELU}(\sinh(e^{\arctan(x)}-1))$                           | 0.7719 |
| $HardSigmoid(HardSigmoid(x)) \cdot ELU(x)$                       | 0.7718 |
| ELU(Swish(-x))                                                   | 0.7679 |
| Swish(-2x)                                                       | 0.7664 |
| $x \cdot \operatorname{erfc}(\operatorname{ELU}(x))$             | 0.7635 |
| $\operatorname{ReLU}(x)$                                         | 0.7660 |

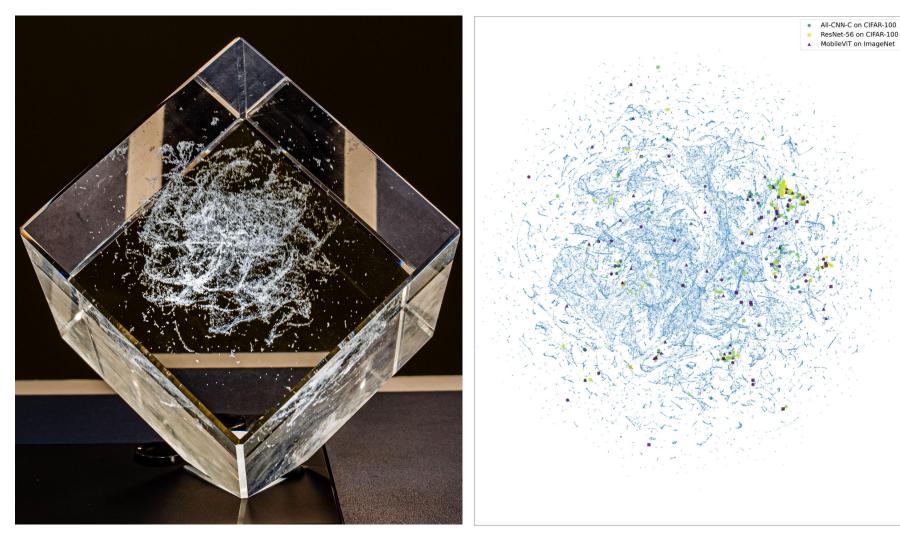
#### A Surprising Discovery for CoAtNet

• A sigmoidal design that outperformed all other activation functions was discovered.

• The network uses the function like a rectifier at initialization and like a sigmoidal function after training.

• The discovery challenges the status quo of always using rectifier nonlinearities in deep learning.





0.5 0 F Validation Accuracy 0.3 0.2

0.7

0.6

11

0.1