DYffusion: A Dynamics-Informed Diffusion Model for Spatiotemporal Forecasting

Salva Rühling Cachay, Bo Zhao, Hailey Joren, Rose Yu

UC San Diego

NeurIPS 2023

arxiv.org/abs/2306.01984

github.com/Rose-STL-Lab/dyffusion

Motivation

Existing ML models for high-dimensional spatiotemporal forecasting tend to be:

• Deterministic → blurry, unrealistic long-range forecasts

1month Prediction

ClimaX: A foundation model for weather and climate, Nguyen et al., ICML 23, <u>https://arxiv.org/abs/2301.10343</u> -7.5

- 290

280

270

- 260

- 250

10

-10

290

280

270

260

- 250

7.5

2.5 0.0 -2.5 -5.0

Motivation

Existing ML models for high-dimensional spatiotemporal forecasting tend to be:

- Deterministic → blurry, unrealistic long-range forecasts
- Autoregressive → Inference differs from training, errors accumulate, and rollouts become long-term unstable

(b) AFNO

(d) SFNO, linear

Figure 1. Qualitative comparison of temperature predictions (±850) over Antarctica at 4380h (730 autoregressive steps). The SFNO shows no visible artifacts even after six-month-long rollouts. *Spherical Fourier Neural Operators: Learning stable dynamics on the sphere,* Bonev et al., ICML 23, https://arxiv.org/abs/2306.03838

Motivation: Diffusion models are mostly designed for *static* data

<u>Key idea:</u> Replace the forward & reverse processes with temporal interpolation & forecasting

Forecasting with DYffusion at inference time

DYffusion forecasts a sequence of h snapshots $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_h$ given the initial conditions \mathbf{x}_0 similarly to how standard diffusion models are used to sample from a distribution.

Forecasting with DYffusion at inference time

DYffusion forecasts a sequence of h snapshots $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_h$ given the initial conditions \mathbf{x}_0 similarly to how standard diffusion models are used to sample from a distribution.

Methods: Training

- Standard forward process \rightarrow a stochastic temporal interpolation net, \mathcal{I}_{ϕ}
- Standard reverse process \rightarrow a deterministic forecaster network, F_{θ} , that predicts h steps ahead
- Train networks in two stages with simple time-conditioned objectives
- In the second stage and during sampling, use a schedule that maps diffusion steps to interpolation timesteps. In the simplest case $[i_n]_{i=0}^{N-1} = \{0, 1, \dots, h-1\}$

Algorithm 1 DYffusion, Two-stage Training

Input: networks $F_{\theta}, \mathcal{I}_{\phi}$, norm $|| \cdot ||$, horizon h, schedule $[i_n]_{i=0}^{N-1}$ Stage 1: Train interpolator network, \mathcal{I}_{ϕ}

- 1. Sample $i \sim \texttt{Uniform}\left(\{1, \ldots, h-1\}\right)$
- 2. Sample $\mathbf{x}_t, \mathbf{x}_{t+i}, \mathbf{x}_{t+h} \sim \mathcal{X}$
- 3. Optimize $\min_{\phi} ||\mathcal{I}_{\phi}(\mathbf{x}_t, \mathbf{x}_{t+h}, i) \mathbf{x}_{t+i}||^2$

Stage 2: Train forecaster network (diffusion model backbone), F_{θ}

- 1. Freeze \mathcal{I}_{ϕ} and enable inference stochasticity (e.g. dropout)
- 2. Sample $n \sim \text{Uniform}(\{0, \dots, N-1\})$ and $\mathbf{x}_t, \mathbf{x}_{t+h} \sim \mathcal{X}$
- 3. Optimize $\min_{\theta} ||F_{\theta}(\mathcal{I}_{\phi}(\mathbf{x}_t, \mathbf{x}_{t+h}, i_n), i_n) \mathbf{x}_{t+h}||^2$

Methods: Sampling

• DYffusion models the dynamics $\mathbf{x}(s)$ as follows, given initial conditions $\mathbf{x}(t) = \mathbf{x}_t$:

$$\mathbf{x}(s) = \mathbf{x}(t) + \int_{t}^{s} \frac{d\mathcal{I}_{\phi}(\mathbf{x}_{t}, F_{\theta}(\mathbf{x}, s), s)}{ds} \quad \text{for } s \in (t, t+h].$$

• At inference time, we evaluate the integral using cold sampling [1].

Proposition 1. Cold Sampling is an approximation of the Euler method. **Proposition 2**. In Cold Sampling, the discretization error per step is bounded by $O(\Delta s)$. Naive sampling does not have this property.

• Different discretizations are allowed: flexible sampling schedules at inference time

Algorithm 2 Adapted Cold Sampling [2] for DYffusion

Input: Initial conditions x̂_t := x_t, schedule [i_n]^{N-1}_{i=0}, output timesteps J (by default J = {1,..., h − 1})
for n = 0, 1, ..., N − 1 do
x̂_{t+h} ← F_θ(x̂_{t+in}, i_n)
x̂_{t+in+1} = I_φ (x_t, x̂_{t+h}, i_{n+1}) − I_φ (x_t, x̂_{t+h}, i_n) + x̂_{t+in}
end for
x̂_{t+j} ← I_φ (x_t, x̂_{t+h}, j), ∀j ∈ J # Optional refinement
Return: {x̂_{t+j} | j ∈ J} ∪ {x̂_{t+h}}

Results: Competitive probabilistic rollouts

Main benchmark results. Evaluation with 50-member ensembles for sea surface temperature forecasting of 1 to 7 days ahead, and Navier-Stokes flow full trajectory forecasting of 64 timesteps. Numbers are averaged out over the evaluation horizon. **Bold** indicates best, blue second best. Lower is better for CRPS and MSE; Closer to 1 is better for SSR.

Method	SST				Navier-Stokes		
	CRPS	MSE	SSR	Time [s]	CRPS	MSE	SSR
Perturbation	0.281 ± 0.004	0.180 ± 0.011	0.411 ± 0.046	0.4241	0.090 ± 0.001	0.028 ± 0.000	0.448 ± 0.002
Dropout	0.267 ± 0.003	0.164 ± 0.004	0.406 ± 0.042	0.4241	0.078 ± 0.001	0.027 ± 0.001	0.715 ± 0.005
DDPM	0.246 ± 0.005	0.177 ± 0.005	0.674 ± 0.011	0.3054	0.180 ± 0.004	0.105 ± 0.010	0.573 ± 0.001
MCVD	0.216	0.161	0.926	79.167	0.154 ± 0.043	0.070 ± 0.033	0.524 ± 0.064
DYffusion	0.224 ± 0.001	0.173 ± 0.001	1.033 ± 0.005	4.6722	0.067 ± 0.003	$0.022 \ \pm 0.002$	0.877 ± 0.006

Results: Temporal super-resolution (8x)

Summary

- First study on diffusion models for spatiotemporal forecasting
- Novel adaptation of diffusion models to ensemble-based probabilistic forecasting
- Effective training approach for multi-step and long-range forecasting with low memory needs
- Competitive performance on probabilistic evaluations for forecasting complex dynamics in sea surface temperatures, Navier-Stokes flows, and spring mesh systems

+ more details, results and extensive ablations in our paper!

Thanks for listening! Feel free to reach out :)

sruhlingcachay@ucsd.edu

Blog: https://salvarc.github.io/blog/2023/dyffusion

https://github.com/Rose-STL-Lab/dyffusion

Paper: <u>arxiv.org/abs/2306.01984</u>