Large Language Models as Commonsense **Knowledge for Large-Scale Task Planning**

Zirui Zhao

Wee Sun Lee

NeurIPS 2023

David Hsu

NUS Computing

Planning in large-scale environments

I want to have some fruit please.

Large domain, e.g., hundreds of objects

Partial observation, e.g., obstruction

Long horizon, multiple actions required

Planning in large-scale environments

I want to have some fruit please.

How to solve the challenging large-scale planning problems?

Planning with large language models

I want to have some fruit please

I. Go to kitchen; 2. Open fridge; 3 ...

LLM as a policy

E.g., SayCan; Inner Monologue; Voyager; ...

Action: Go to kitchen

LLM as a world model

LLM as a world model + LLM as a policy

- - LLM world model improves the LLM policy's accuracy \bullet
 - LLM policy as a search heuristic to help the planning \bullet

• LLM as world model and policy in planning algorithm (Monte Carlo Tree Search)

LLMs as Commonsense World Model

- Sampling from belief tree for approximate planning
 - Action selection: select action biasedly according to commonsense

- Sampling from belief tree for approximate planning
 - Action selection: select action biasedly according to commonsense
 - Observation sampling: sample observation according to commonsense

- Sampling from belief tree for approximate planning
 - Action selection: select action biasedly according to commonsense
 - Observation sampling: sample observation according to commonsense

- Sampling from belief tree for approximate planning
 - Action selection: select action biasedly according to commonsense
 - Observation sampling: sample observation according to commonsense
 - Expansion & Rollout: get the reward

Prompts

- Sampling from belief tree for approximate planning
 - Action selection: select action biasedly according to commonsense
 - Observation sampling: sample observation according to commonsense
 - Expansion & Rollout: get the reward
 - Backup: update the estimated Q function

Prompts

Experiments

- VirtualHome simulator
- Task: object rearrangements in household environments
 - Simple v.s. compositional tasks
 - In-distribution v.s. novel tasks
- Baselines:
 - LLM as world model: Upper confidence tree (UCT) without heuristic
 - LLM as Policy: GPT3.5 and GPT2 policy

- LLM as both the world model and policy outperforms either alone
 - A more accurate LLM world model improve the accuracy of LLM policy \bullet
 - LLM policy guides planning to make it more efficient \bullet

Experimental results

- Using LLM as **World Model** or **Policy**, which is better?
- has smaller generalization error^[1]
- Analysis and experiments: multi-digit multiplication, travel planning, object rearrangement, ...

[1] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.

LLM as world model or policy?

Minimum Description Length (MDL): method with shorter description length

New Orleans

Instruction: Put one apple on the kitchen table and one toothbrush inside the bathroom cabinet.

- 1: Walk to fridge
- 2: Open fridge
- 3: Walk to apple
- 4: Grab apple
- 5: Walk to kitchen table
- 6: Put apple on kitchen table
- 7: Walk to bathroom 8: Walk to toothbrush
- 9: Grab toothbrush
- 10: Open bathroom cabinet
- 11: Put toothbrush inside bathroom
- cabinet

- LLM as world model and policy outperforms either one
- Choose between LLM world model and policy? Use MDL principle: shorter description length is better

Thank You!

Paper and Code

Contact

ziruiz@comp.nus.edu.sg

Website

https://llm-mcts.github.io

Example: multi-digit multiplication

- LLM Policy
 - Table with inputs and results
 - Description length: $O(n10^n)$
- LLM Model + algorithm
 - Single-digit multiplication table by LLM
 - Algorithm
 - Description length: constant
- Empirical results

LLM Policy

	0	1	2	 10 ⁿ -1
0	0	0	0	 0
1	0	1	2	 10 ⁿ -1
2	0	2	4	
10 ⁿ -1	0	10 ⁿ -1		

LLM World Model + Algorithm


```
function multiply (x[1..p], y[1..q]):
// multiply x for each y[i]
for i = q to 1
  carry = 0
  for j = p to 1
     t = x[j] * y[i]
     t += carry
     carry = t // 10
     digits[j] = t mod 10
  summands[i] = digits
```

// add partial results (computation not shown) product = $\sum_{i=1}^{q} \text{summands}[q+1-i] \cdot 10^{i-1}$ return product

Example: multi-digit multiplication

- LLM Policy
 - Table with inputs and results
 - Description length: $O(n10^n)$
- LLM Model + algorithm
 - Single-digit multiplication table by LLM
 - Algorithm
 - Description length: constant
- Empirical results

Example: travel planning

- Problem: predict flight routes between given cities
- LLM Policy: table of travel
 - Description length: $O(n^2 \log n)$
- LLM World Model solution: flight graph+search
 - Description length: $O(n \log n)$
- Results: LLM World Model solution works better

Current\goal	New Orleans	Sydney	• • •
Singapore	San Francisco	Sydney	
Sydney	San Francisco		
San Francisco	New Orleans	Sydney	
• • •			

Example: travel planning

- Problem: predict flight routes between given cities
- LLM Policy: table of travel
 - Description length: $O(n^2 \log n)$ \bullet
- LLM World Model solution: flight graph+search
 - Description length: $O(n \log n)$ \bullet
- Results: LLM World Model solution works better

Example: object rearrangement

- Consider a house with n objects, m containers, and k rooms
- LLM policy description length: $O(mn \log(m + k))$
- LLM world model description length: $O((m + n) \log(m + k))$
- Both: LLM world model + LLM policy heuristic
 - LLM Policy helps search algorithm
 - LLM world model is more accurate and improve LLM policy