Nearly Optimal Bounds for Cyclic Forgetting

Halyun Jeong¹ Mark Kong¹ Deanna Needell¹ William Swartworth² Rachel Ward³

¹University of California, Los Angeles

²Carnegie Mellon University

³University of Texas at Austin

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overview: Our 2 main results

Numerical range bound: Let F = R or C. Let
P_d = {orthogonal projections in F^d} and let P^T_d = ∏^T_{t=1} P_d
be the Minkowski product. Then U_{A∈P^T_d} W(A) is a (closed,

filled-in) sinusoidal spiral.

• Corollary: Let $A \in \mathcal{P}_d^T$. Then $||A^m(1-A)|| = O(\frac{T}{m})$.

2. Improved bound on forgetting in continual learning

- ▶ T suitably normalized datasets, at least one of rank r_{max} , in \mathbb{R}^d , cycled through *m* times
- Trivial bound: 1

• Known lower bound¹:
$$\Omega(\frac{T^2}{mT}) = \Omega(\frac{T}{m})$$

• Old upper bound²:
$$\left\{\frac{T^2}{\sqrt{mT}}, \frac{T^2(d-r_{\max})}{2mT}\right\}$$

• New upper bound: $O(\frac{T^2}{m})$ with reasonable constant³

¹Itay Evron et al. "How catastrophic can catastrophic forgetting be in linear regression?" In: *Conference on Learning Theory*. PMLR. 2022, pp. 4028–4079. ²Ibid.

Review of Forgetting

- Continual learning: An ML algorithm (with parameters initialized at w₀) is given a sequence S of tasks to learn over, with corresponding loss functions L₁, L₂,..., yielding parameter vectors w₁, w₂,... after each task
- Assuming $\mathcal{L}_t(\vec{w_t}) = 0$ for all t, forgetting after *n*th update is

$$F_{\mathcal{S}}(n) := \frac{1}{n} \sum_{t=1}^{n} \mathcal{L}_t(\vec{w}_n)$$

- In words: Average loss over all previously seen tasks, evaluated at *n*th learned parameter vector.
- ► Each task is weighted equally, but our results generalize to weighted forgetting with weights W₁, W₂, ··· ∈ ℝ:

$$\frac{1}{n}\sum_{t=1}^{n}W_{t}\mathcal{L}_{t}(\vec{w}_{n})$$

⁴Relaxed slightly in paper

Our Setting

- Tasks are linear regression over datasets (X_t, \vec{y}_t)
- Loss is sum of squares error
- ► Datasets visited cyclically, in cycles of length T: $(X_1, \vec{y_1}), (X_2, \vec{y_2}), \dots, (X_T, \vec{y_T}), (X_1, \vec{y_1}), \dots$
- Datasets jointly realizable⁵
- Learning algorithm orthogonally projects onto solution space at each step
- Only consider forgetting after a whole number of cycles⁶, so forgetting becomes average loss over all datasets

⁶Can be relaxed via weighted forgetting

⁵Can be relaxed slightly

Our Approach

Recall $\mathcal{P}_d = \{ \text{orthogonal projections in } \mathbb{F}^d \}$. Take $\mathbb{F} = \mathbb{R}$. Previously known bounds:

▶ If the datasets $X_1, ..., X_T \subset \mathbb{R}^d$ are normalized⁷ so $\max_t ||X_t|| \le 1$ and other suitable normalizations hold, then⁸

$$F_{\mathcal{S}}(mT) \leq rac{T-1}{2} \max_{A \in \mathcal{P}_d^T} \|A^m(1-A)\|$$

There exists Q ∈ ℝ such that, for any complex Hilbert space H, any linear map φ : H → H, and any polynomial f ∈ ℂ[z],

$$\|f(\varphi)\| \leq Q \sup_{z \in W(\varphi)} |f(z)|.$$

Best known⁹ value of Q is $1 + \sqrt{2}$.

⁹Michel Crouzeix and César Palencia. "The numerical range is a (1+2)-spectral set". In: SIAM Journal on Matrix Analysis and Applications 38.2 (2017), pp. 649–655.

⁷Alternative normalizations are possible

⁸Evron et al., "How catastrophic can catastrophic forgetting be in linear regression?"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof Strategy over $\mathbb C$

Characterize $\bigcup_{\substack{A \in \mathcal{P}_d^T \\ d \in \mathbb{Z}_{\geq 1}}} W(A)$: Let $S(\mathbb{C}^d)$ be the unit sphere. Then

$$z \in \bigcup_{\substack{A \in \mathcal{P}_d^T \\ d \in \mathbb{Z}_{\geq 1}}} W(A)$$

 $\iff \exists \vec{u} \in S(\mathbb{C}^d), P_1, P_2, \dots, P_T \in \mathcal{P}_d : \langle \vec{u}, P_T P_{T-1} \dots P_1 \vec{u} \rangle = z \\ \iff \exists \vec{u}_0, \vec{u}_1, \dots, \vec{u}_T \in S(\mathbb{C}^d) : \langle \vec{u}_0, \vec{u}_T \rangle \langle \vec{u}_T, \vec{u}_{T-1} \rangle \dots \langle \vec{u}_1, \vec{u}_0 \rangle = z$

so the boundary of $\bigcup_{\substack{A \in \mathcal{P}_d^T \\ d \in \mathbb{Z}_{\geq 1}}} W(A)$ is given by critical points of the \mathbb{R} -smooth map $P : (S(\mathbb{C}^d))^T \to \mathbb{C}$ given by

$$(\vec{u}_0, \vec{u}_1, \ldots, \vec{u}_T) \mapsto \langle \vec{u}_0, \vec{u}_T \rangle \langle \vec{u}_T, \vec{u}_{T-1} \rangle \ldots \langle \vec{u}_1, \vec{u}_0 \rangle.$$

Extremizers must be coplanar, so enough to consider d = 2. Setting derivatives of each input to be parallel + algebra gives characterization of critical points (in terms of quaternions).

900

Proof strategy over \mathbb{C} : Relation to quaternions

Can rephrase problem and prove result in terms of quaternions. To extremize

$$\mathsf{P}(\vec{u}_0, \vec{u}_1, \ldots, \vec{u}_T) := \langle \vec{u}_0, \vec{u}_T \rangle \langle \vec{u}_T, \vec{u}_{T-1} \rangle \ldots \langle \vec{u}_1, \vec{u}_0 \rangle,$$

for unit quaternions q_1, \ldots, q_T , set $\vec{u_t} = q_t q_{t-1} \ldots q_1$ and let $q_0 = (q_T q_{T-1} \ldots q_1)^{-1}$. Then

$$P(\vec{u}_0,\ldots,\vec{u}_T) = \mathfrak{C}q_T\mathfrak{C}q_{T-1}\ldots\mathfrak{C}q_1\mathfrak{C}q_0$$

where \mathfrak{C} denotes complex part.

In other words, problem is to extremize $\mathfrak{C}q_T\mathfrak{C}q_{T-1}\ldots\mathfrak{C}q_1\mathfrak{C}q_0$ subject to $q_Tq_{T-1}\ldots q_1q_0 = 1$.

Critical points (up to certain multiplication by complex units) are when (two of the q_t have zero complex part or):

- ▶ if T + 1 is odd, $q_T = q_{T-1} = \cdots = q_1 = q_0$ is a T + 1th quaternionic root of unity
- ▶ if T + 1 is even, q_T = q_{T-1} = ··· = q₁ = q₀ is a 2(T + 1)th quaternionic root of unity (where the multiplication by complex units is chosen to make their product 1, if necessary)

Proof Strategy over \mathbb{R}

For any $z \in \partial \left(\bigcup_{\substack{A \in \mathcal{P}_d^T \\ d \in \mathbb{Z}_{\geq 1}}} W(A) \right)$, Find a sequence of projections

onto planes in \mathbb{R}^4 such that the extensions of these projections to \mathbb{C}^4 has an invariant copy of \mathbb{C}^2 , and restricting there gives the complex projections realizing that z.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

To do this, use the characterization of critical points to get a description of what these projections in \mathbb{R}^4 must look like.