
Nearly Optimal Bounds for Cyclic Forgetting

Halyun Jeong1 Mark Kong1 Deanna Needell1

William Swartworth2 Rachel Ward3

1University of California, Los Angeles

2Carnegie Mellon University

3University of Texas at Austin



Overview: Our 2 main results

1. Numerical range bound: Let F = R or C. Let
Pd = {orthogonal projections in Fd} and let PT

d =
∏T

t=1 Pd

be the Minkowski product.Then
⋃

A∈PT
d

d∈Z≥1

W (A) is a (closed,

filled-in) sinusoidal spiral.
▶ Corollary: Let A ∈ PT

d . Then ∥Am(1− A)∥ = O(Tm ).

2. Improved bound on forgetting in continual learning
▶ T suitably normalized datasets, at least one of rank rmax, in

Rd , cycled through m times
▶ Trivial bound: 1
▶ Known lower bound1: Ω( T 2

mT ) = Ω(Tm )

▶ Old upper bound2:
{

T 2
√
mT

, T 2(d−rmax)
2mT

}
▶ New upper bound: O(T

2

m ) with reasonable constant3

1Itay Evron et al. “How catastrophic can catastrophic forgetting be in linear
regression?” In: Conference on Learning Theory. PMLR. 2022, pp. 4028–4079.

2Ibid.
3Plus minor constant-factor optimizations not due to the numerical range

bound



Review of Forgetting
▶ Continual learning: An ML algorithm (with parameters

initialized at w⃗0) is given a sequence S of tasks to learn over,
with corresponding loss functions L1,L2, . . . , yielding
parameter vectors w⃗1, w⃗2, . . . after each task

▶ Assuming4 Lt(w⃗t) = 0 for all t, forgetting after nth update is

FS(n) :=
1

n

n∑
t=1

Lt(w⃗n)

▶ In words: Average loss over all previously seen tasks,
evaluated at nth learned parameter vector.

▶ Each task is weighted equally, but our results generalize to
weighted forgetting with weights W1,W2, · · · ∈ R:

1

n

n∑
t=1

WtLt(w⃗n)

4Relaxed slightly in paper



Our Setting

▶ Tasks are linear regression over datasets (Xt , y⃗t)

▶ Loss is sum of squares error

▶ Datasets visited cyclically, in cycles of length T :
(X1, y⃗1), (X2, y⃗2), . . . , (XT , y⃗T ), (X1, y⃗1), . . .

▶ Datasets jointly realizable5

▶ Learning algorithm orthogonally projects onto solution space
at each step

▶ Only consider forgetting after a whole number of cycles6, so
forgetting becomes average loss over all datasets

5Can be relaxed slightly
6Can be relaxed via weighted forgetting



Our Approach
Recall Pd = {orthogonal projections in Fd}. Take F = R.
Previously known bounds:
▶ If the datasets X1, . . . ,XT ⊂ Rd are normalized7 so

maxt∥Xt∥ ≤ 1 and other suitable normalizations hold, then8

FS(mT ) ≤ T − 1

2
max
A∈PT

d

∥Am(1− A)∥

▶ There exists Q ∈ R such that, for any complex Hilbert space
H, any linear map φ : H → H, and any polynomial f ∈ C[z ],

∥f (φ)∥ ≤ Q sup
z∈W (φ)

|f (z)|.

Best known9 value of Q is 1 +
√
2.

7Alternative normalizations are possible
8Evron et al., “How catastrophic can catastrophic forgetting be in linear

regression?”
9Michel Crouzeix and César Palencia. “The numerical range is a

(1+2)-spectral set”. In: SIAM Journal on Matrix Analysis and Applications
38.2 (2017), pp. 649–655.





Proof Strategy over C
Characterize

⋃
A∈PT

d
d∈Z≥1

W (A): Let S(Cd) be the unit sphere. Then

z ∈
⋃

A∈PT
d

d∈Z≥1

W (A)

⇐⇒ ∃u⃗ ∈ S(Cd),P1,P2, . . . ,PT ∈ Pd : ⟨u⃗,PTPT−1 . . .P1u⃗⟩ = z

⇐⇒ ∃u⃗0, u⃗1, . . . , u⃗T ∈ S(Cd) : ⟨u⃗0, u⃗T ⟩⟨u⃗T , u⃗T−1⟩ . . . ⟨u⃗1, u⃗0⟩ = z

so the boundary of
⋃

A∈PT
d

d∈Z≥1

W (A) is given by critical points of the

R-smooth map P : (S(Cd))T → C given by

(u⃗0, u⃗1, . . . , u⃗T ) 7→ ⟨u⃗0, u⃗T ⟩⟨u⃗T , u⃗T−1⟩ . . . ⟨u⃗1, u⃗0⟩.

Extremizers must be coplanar, so enough to consider d = 2.
Setting derivatives of each input to be parallel + algebra gives
characterization of critical points (in terms of quaternions).



Proof strategy over C: Relation to quaternions
Can rephrase problem and prove result in terms of quaternions.
To extremize

P(u⃗0, u⃗1, . . . , u⃗T ) := ⟨u⃗0, u⃗T ⟩⟨u⃗T , u⃗T−1⟩ . . . ⟨u⃗1, u⃗0⟩,

for unit quaternions q1, . . . , qT , set u⃗t = qtqt−1 . . . q1 and let
q0 = (qTqT−1 . . . q1)

−1. Then

P(u⃗0, . . . , u⃗T ) = CqTCqT−1 . . .Cq1Cq0

where C denotes complex part.
In other words, problem is to extremize CqTCqT−1 . . .Cq1Cq0
subject to qTqT−1 . . . q1q0 = 1.
Critical points (up to certain multiplication by complex units) are
when (two of the qt have zero complex part or):
▶ if T + 1 is odd, qT = qT−1 = · · · = q1 = q0 is a T + 1th

quaternionic root of unity
▶ if T + 1 is even, qT = qT−1 = · · · = q1 = q0 is a 2(T + 1)th

quaternionic root of unity (where the multiplication by
complex units is chosen to make their product 1, if necessary)



Proof Strategy over R

For any z ∈ ∂

(⋃
A∈PT

d
d∈Z≥1

W (A)

)
, Find a sequence of projections

onto planes in R4 such that the extensions of these projections to
C4 has an invariant copy of C2, and restricting there gives the
complex projections realizing that z .
To do this, use the characterization of critical points to get a
description of what these projections in R4 must look like.


