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(2) that this process is governed by some latent stochastic process 𝑍 (with paths 𝐳𝑖).
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We follow a Variational Bayes approach with the following directed graphical model:

Fitting a process to data
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LIGHTBULB Well-explored in the vector-valued setting (e.g., 𝐱𝑖 ∈ ℝ𝑑).
? Less well-explored in the path-valued setting (e.g., 𝐱𝑖 ∈ C([0, 𝑇], ℝ𝑑)) — Ours!
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In this work, we consider path distributions of stochastic processes that are solutions to SDEs.
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of some (matrix) Lie group action appears to be a reasonable choice.
Considering these aspects, choosing SDEs that evolve on a homogeneous space as the consequence
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SDEs in (quadratic) matrix Lie groups
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⎠
𝐺𝑡 , 𝐺0 = 𝐈𝑛 .
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To implement a drift parameterization depending on 𝐱, we realize 𝐊𝝓(𝐱)(𝑡) ∶ [0, 𝑇] → 𝔤 via Chebyshev
polynomials with learnable coefficients.
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The prior 𝑝𝜽(𝐳) and approximate posterior 𝑞𝜽(𝐳|𝐱) are determined by an SDE of this form!



Learning objective

The overall objective (for our example of latent paths on 𝕊𝑛−1):

L(𝝓, 𝜽; 𝐱𝑖) = 𝐷KL (P𝝓
0 (𝑍0∣𝐱𝐢) ∥U𝕊𝑛−1)

+𝔼𝐳∼𝑞𝝓(𝐳∣𝐱𝑖) [log 𝑝𝜽 (𝐱𝑖∣𝐳)]

+
1
2 ∫

𝑇

0
∫

𝕊𝑛−1
𝑞𝑍𝑡

(𝐳)∥𝐊𝝓(𝐱𝑖)(𝑡)𝐳∥2d𝐳d𝑡



Learning objective

The overall objective (for our example of latent paths on 𝕊𝑛−1):

+𝔼𝐳∼𝑞𝝓(𝐳∣𝐱𝑖) [log 𝑝𝜽 (𝐱𝑖∣𝐳)]

+
1
2 ∫

𝑇

0
∫

𝕊𝑛−1
𝑞𝑍𝑡

(𝐳)∥𝐊𝝓(𝐱𝑖)(𝑡)𝐳∥2d𝐳d𝑡

KL-div. to uniform distribution on 𝕊𝑛−1

P𝝓
0 (𝑍0∣𝐱𝑖)

L(𝝓, 𝜽; 𝐱𝑖) = 𝐷KL (P𝝓
0 (𝑍0∣𝐱𝐢) ∥U𝕊𝑛−1)



Learning objective

The overall objective (for our example of latent paths on 𝕊𝑛−1):

L(𝝓, 𝜽; 𝐱𝑖) = 𝐷KL (P𝝓
0 (𝑍0∣𝐱𝐢) ∥U𝕊𝑛−1)

+𝔼𝐳∼𝑞𝝓(𝐳∣𝐱𝑖) [log 𝑝𝜽 (𝐱𝑖∣𝐳)]

+
1
2 ∫

𝑇

0
∫

𝕊𝑛−1
𝑞𝑍𝑡

(𝐳)∥𝐊𝝓(𝐱𝑖)(𝑡)𝐳∥2d𝐳d𝑡

KL-div. between approximate posterior
and a driftless prior

(essentially penalizes large rotations)



Learning objective

The overall objective (for our example of latent paths on 𝕊𝑛−1):

L(𝝓, 𝜽; 𝐱𝑖) = 𝐷KL (P𝝓
0 (𝑍0∣𝐱𝐢) ∥U𝕊𝑛−1)

+
1
2 ∫

𝑇

0
∫

𝕊𝑛−1
𝑞𝑍𝑡

(𝐳)∥𝐊𝝓(𝐱𝑖)(𝑡)𝐳∥2d𝐳d𝑡

+𝔼𝐳∼𝑞𝝓(𝐳∣𝐱𝑖) [log 𝑝𝜽 (𝐱𝑖∣𝐳)]

Expected log-likelihood of observed path
given the latent path



Learning objective

We use a one-step geometric Euler-Maryuama SDE solver, that is particularly easy to implement!

The overall objective (for our example of latent paths on 𝕊𝑛−1):

L(𝝓, 𝜽; 𝐱𝑖) = 𝐷KL (P𝝓
0 (𝑍0∣𝐱𝐢) ∥U𝕊𝑛−1)

+𝔼𝐳∼𝑞𝝓(𝐳∣𝐱𝑖) [log 𝑝𝜽 (𝐱𝑖∣𝐳)]

[Marjanovic & Solo 2015; Muniz et al., 2022]

+
1
2 ∫

𝑇

0
∫

𝕊𝑛−1
𝑞𝑍𝑡

(𝐳)∥𝐊𝝓(𝐱𝑖)(𝑡)𝐳∥2d𝐳d𝑡

Sampling from the approximate posterior:

P𝝓
0 (𝑍0∣𝐱𝑖)

𝐳



Five training samples of handwritten rotating 3’s from Rotating MNIST

Some results

MSE (×10−3)
†GPPVAE-dis 30.9 ± 0.02
†GPPVAE-joint 28.8 ± 0.05
†ODE2VAE 19.4 ± 0.06
†ODE2VAE-KL 18.8 ± 0.31
CNN-ODE 14.5 ± 0.73
Ours 11.8 ± 0.25

† indicates results from [Yildiz et al., 2019].

x1

x2

x5

16 evenly spaced time points.



PhysioNet (2012) interpolation task (see [Shukla & Marlin, 2021]):
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PhysioNet (2012) interpolation task (see [Shukla & Marlin, 2021]):
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Time series from testing portion

Model input
Model output at all 480 timepoints
Evaluate MSE on left-out timepoints

MSE (×10−3)
CRU 5.11 ± 0.40
f-CRU 5.24 ± 0.49
mTAND-Full 3.61 ± 0.08
mTAND-ODE 3.38 ± 0.03
Ours 3.11 ± 0.02

Some results

[Shukla & Marlin, 2021]
[Shukla & Marlin, 2021] (with added ODE)

[Schirmer et al., 2022]
[Schirmer et al., 2022]



Thanks for your attention!

Come see us at our poster # 1400

Full source code available at

Wed 13 Dec 5 p.m. CST @ Great Hall & Hall B1+B2

https://github.com/plus-rkwitt/LatentSDEonHS
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