Latent SDEs on Homogeneous Spaces

Ohttps://github.com/plus-rkwitt/LatentSDEonHS

Problem setting

We seek to learn from sequential data, i.e., from a set of N multivariate time series $\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}$.

Problem setting

We seek to learn from sequential data, i.e., from a set of N multivariate time series $\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}$. Example data sample:

Problem setting

We seek to learn from sequential data, i.e., from a set of N multivariate time series $\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}$. Example data sample:

We assume
(1) \mathbf{x}^{i} to be a partially observed continuous path from a stochastic process $X: \Omega \times[0, T] \rightarrow \mathbb{R}^{d}$, and
(2) that this process is governed by some latent stochastic process Z (with paths z^{i}).

```
We seek to learn X!
```


Fitting a process to data

We follow a Variational Bayes approach with the following directed graphical model:

Fitting a process to data

We follow a Variational Bayes approach with the following directed graphical model:

1 A path \mathbf{z}^{i} is drawn from a (latent) parametric prior path distribution $p_{\boldsymbol{\theta}^{*}}(\mathbf{z})$.

Fitting a process to data

We follow a Variational Bayes approach with the following directed graphical model:

1 A path \mathbf{z}^{i} is drawn from a (latent) parametric prior path distribution $p_{\boldsymbol{\theta}^{*}}(\mathbf{z})$.

2 An (observed) path \mathbf{x}^{i} is drawn from the conditional path distribution $p_{\boldsymbol{\theta}^{*}}\left(\mathbf{x} \mid \mathbf{z}^{i}\right)$.

$$
\boldsymbol{\theta}^{*} \text { - true (unknown) parameter }
$$

Fitting a process to data

We follow a Variational Bayes approach with the following directed graphical model:

Well-explored in the vector-valued setting (e.g., $\mathbf{x}^{i} \in \mathbb{R}^{d}$).
? Less well-explored in the path-valued setting (e.g., $\mathbf{x}^{i} \in \mathcal{C}\left([0, T], \mathbb{R}^{d}\right)$) - Ours!

1 A path \mathbf{z}^{i} is drawn from a (latent) parametric prior path distribution $p_{\boldsymbol{\theta}^{*}}(\mathbf{z})$

2 An (observed) path \mathbf{x}^{i} is drawn from the conditional path distribution $p_{\boldsymbol{\theta}^{*}}\left(\mathbf{x} \mid \mathbf{z}^{i}\right)$.

Approximate variational inference

Learning directed probabilistic models in case of intractable posterior path distributions $p_{\boldsymbol{\theta}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$,

Approximate variational inference

Learning directed probabilistic models in case of intractable posterior path distributions $p_{\boldsymbol{\theta}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$,

entails the choice of ...

- ... a tractable prior path distribution $p_{\boldsymbol{\theta}}(\mathbf{z})$ over latent paths \mathbf{z},

Approximate variational inference

Learning directed probabilistic models in case of intractable posterior path distributions $p_{\boldsymbol{\theta}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$,

entails the choice of ...

- ... a tractable prior path distribution $p_{\boldsymbol{\theta}}(\mathbf{z})$ over latent paths \mathbf{z},
- ... a tractable approximate posterior path distribution $q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$,

Approximate variational inference

Learning directed probabilistic models in case of intractable posterior path distributions $p_{\boldsymbol{\theta}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$,

entails the choice of ...

- ... a tractable prior path distribution $p_{\boldsymbol{\theta}}(\mathbf{z})$ over latent paths \mathbf{z},
- ... a tractable approximate posterior path distribution $q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$, and the maximization of the evidence lower bound (ELBO) w.r.t. $\boldsymbol{\theta}, \boldsymbol{\phi}$:

$$
\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i}\right) \geq-D_{\mathrm{KL}}\left(q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right) \| p_{\boldsymbol{\theta}}(\mathbf{z})\right)+\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i} \mid \mathbf{z}\right)\right]
$$

Approximate variational inference

Learning directed probabilistic models in case of intractable posterior path distributions $p_{\boldsymbol{\theta}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$,

entails the choice of ...

- ... a tractable prior path distribution $p_{\boldsymbol{\theta}}(\mathbf{z})$ over latent paths \mathbf{z},
- ... a tractable approximate posterior path distribution $q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$, and the maximization of the evidence lower bound (ELBO) w.r.t. $\boldsymbol{\theta}, \boldsymbol{\phi}$:

$$
\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i}\right) \geq-D_{\mathrm{KL}}\left(q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right) \| p_{\boldsymbol{\theta}}(\mathbf{z})\right)+\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i} \mid \mathbf{z}\right)\right]
$$

Approximate variational inference

Learning directed probabilistic models in case of intractable posterior path distributions $p_{\boldsymbol{\theta}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$,

entails the choice of ...

- ... a tractable prior path distribution $p_{\boldsymbol{\theta}}(\mathbf{z})$ over latent paths \mathbf{z},
- ... a tractable approximate posterior path distribution $q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$, and the maximization of the evidence lower bound (ELBO) w.r.t. $\boldsymbol{\theta}, \boldsymbol{\phi}$:

$$
\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i}\right) \geq-D_{\mathrm{KL}}\left(q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right) \| p_{\boldsymbol{\theta}}(\mathbf{z})\right)+\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i} \mid \mathbf{z}\right)\right]
$$

[^0]
Approximate variational inference

Learning directed probabilistic models in case of intractable posterior path distributions $p_{\boldsymbol{\theta}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$,

entails the choice of ...

- ... a tractable prior path distribution $p_{\boldsymbol{\theta}}(\mathbf{z})$ over latent paths \mathbf{z},
- ... a tractable approximate posterior path distribution $q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$, and the maximization of the evidence lower bound (ELBO) w.r.t. $\boldsymbol{\theta}, \boldsymbol{\phi}$:

$$
\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i}\right) \geq-D_{\mathrm{KL}}\left(q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right) \| p_{\boldsymbol{\theta}}(\mathbf{z})\right)+\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i} \mid \mathbf{z}\right)\right] .
$$

Approximate variational inference

Learning directed probabilistic models in case of intractable posterior path distributions $p_{\boldsymbol{\theta}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$,
ϕ

In this work, we consider path distributions of stochastic processes that are solutions to SDEs.

- ... a tractable prior path distribution $p_{\theta}(\mathbf{z})$ over latent paths \mathbf{z},
- ... a tractable approximate posterior path distribution $q_{\phi}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)$,
and the maximization of the evidence lower bound (FIBO) wr. $\boldsymbol{\theta}, \boldsymbol{\phi}$

$$
\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i}\right) \geq-D_{\mathrm{KL}}\left(q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right) \| p_{\boldsymbol{\theta}}(\mathbf{z})\right)+\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i} \mid \mathbf{z}\right)\right]
$$

Choice of latent space

Some favorable properties of latent spaces for carrying distributions connected to random dynamics are ...

Choice of latent space

Some favorable properties of latent spaces for carrying distributions connected to random dynamics are ...

- ... to offer flexibility for modelling non-linear structures (i.e., manifolds),
- ... to include the focus on geometric features (e.g., symmetry), and
- ... to respect the latter under discretization (e.g., for sampling).

Choice of latent space

Some favorable properties of latent spaces for carrying distributions connected to random dynamics are ...

- ... to offer flexibility for modelling non-linear structures (i.e., manifolds),
- ... to include the focus on geometric features (e.g., symmetry), and
- ... to respect the latter under discretization (e.g., for sampling).

Considering these aspects, choosing SDEs that evolve on a homogeneous space as the consequence of some (matrix) Lie group action appears to be a reasonable choice.

Choice of latent space

Example: \mathbb{S}^{2} with (quadratic) matrix Lie group $\mathrm{SO}(3)$.

Choice of latent space

Example: \mathbb{S}^{2} with (quadratic) matrix Lie group $\mathrm{SO}(3)$.

$$
\mathbf{R}_{z}(\alpha)=\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right) \in \mathrm{SO}(3)
$$

Choice of latent space

Example: \mathbb{S}^{2} with (quadratic) matrix Lie group $\mathrm{SO}(3)$.

$$
\mathbf{R}_{z}(\alpha)=\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right) \in \mathrm{SO}(3)
$$

Dynamics in homogeneous spaces

Example continues: \mathbb{S}^{2} with (quatratic) matrix Lie group $\mathrm{SO}(3)$.

$$
\mathrm{SO}(n)=\left\{\mathbf{A} \in \operatorname{Mat}(n): \mathbf{A}^{\top} \mathbf{A}=\mathbf{I}_{n}, \operatorname{det}(\mathbf{A})=+1\right\}
$$

Lie group

Dynamics in homogeneous spaces

Example continues: \mathbb{S}^{2} with (quatratic) matrix Lie group $\mathrm{SO}(3)$.

$$
\operatorname{SO}(n)=\left\{\mathbf{A} \in \operatorname{Mat}(n): \mathbf{A}^{\top} \mathbf{A}=\mathbf{I}_{n}, \operatorname{det}(\mathbf{A})=+1\right\}
$$

Lie group

Sketch for $\mathrm{SO}(3) \cong \operatorname{Int} \mathbb{B}_{r=\pi}^{3} \cup \partial \mathbb{B}_{r=\pi}^{3} / \sim$:

$$
\operatorname{Mat}(n)-\text { space of real } n \times n \text { matrices; } \mathbb{B}_{r=\pi}^{3}-3 \text {-Ball of radius } \pi ; \quad x \sim y: \Leftrightarrow x=-y \vee x=y
$$

Dynamics in homogeneous spaces

Example continues: \mathbb{S}^{2} with (quatratic) matrix Lie group $\mathrm{SO}(3)$.

$$
\operatorname{SO}(n)=\left\{\mathbf{A} \in \operatorname{Mat}(n): \mathbf{A}^{\top} \mathbf{A}=\mathbf{I}_{n}, \operatorname{det}(\mathbf{A})=+1\right\}
$$

Lie group

Sketch for $\mathrm{SO}(3) \cong \operatorname{Int} \mathbb{B}_{r=\pi}^{3} \cup \partial \mathbb{B}_{r=\pi}^{3} / \sim$:

$\operatorname{Mat}(n)-$ space of real $n \times n$ matrices; $\quad \mathbb{B}_{r=\pi}^{3}-3$-Ball of radius $\pi ; \quad x \sim y: \Leftrightarrow x=-y \vee x=y$

Dynamics in homogeneous spaces

Example continues: \mathbb{S}^{2} with (quatratic) matrix Lie group $\mathrm{SO}(3)$.

$$
\operatorname{SO}(n)=\left\{\mathbf{A} \in \operatorname{Mat}(n): \mathbf{A}^{\top} \mathbf{A}=\mathbf{I}_{n}, \operatorname{det}(\mathbf{A})=+1\right\}
$$

Lie group

Sketch for $\mathrm{SO}(3) \cong \operatorname{Int} \mathbb{B}_{r=\pi}^{3} \cup \partial \mathbb{B}_{r=\pi}^{3} / \sim$:

$\operatorname{Mat}(n)-$ space of real $n \times n$ matrices; $\quad \mathbb{B}_{r=\pi}^{3}-3$-Ball of radius $\pi ; \quad x \sim y: \Leftrightarrow x=-y \vee x=y$

Dynamics in homogeneous spaces

Example continues: \mathbb{S}^{2} with (quatratic) matrix Lie group $\mathrm{SO}(3)$.

$$
\mathrm{SO}(n)=\left\{\mathbf{A} \in \operatorname{Mat}(n): \mathbf{A}^{\top} \mathbf{A}=\mathbf{I}_{n}, \operatorname{det}(\mathbf{A})=+1\right\}
$$

Lie group

Sketch for $\mathrm{SO}(3) \cong \operatorname{Int} \mathbb{B}_{r=\pi}^{3} \cup \partial \mathbb{B}_{r=\pi}^{3} / \sim$:

$$
\operatorname{Mat}(n)-\text { space of real } n \times n \text { matrices; } \mathbb{B}_{r=\pi}^{3}-3 \text {-Ball of radius } \pi ; \quad x \sim y: \Leftrightarrow x=-y \vee x=y
$$

Dynamics in homogeneous spaces

Example continues: \mathbb{S}^{2} with (quatratic) matrix Lie group $\mathrm{SO}(3)$.

$$
\mathrm{SO}(n)=\left\{\mathbf{A} \in \operatorname{Mat}(n): \mathbf{A}^{\top} \mathbf{A}=\mathbf{I}_{n}, \operatorname{det}(\mathbf{A})=+1\right\}
$$

Lie group

Sketch for $\mathrm{SO}(3) \cong \operatorname{lnt} \mathbb{B}_{r=\pi}^{3} \cup \partial \mathbb{B}_{r=\pi}^{3} / \sim$:

$$
\operatorname{Mat}(n)-\text { space of real } n \times n \text { matrices; } \mathbb{B}_{r=\pi}^{3}-3 \text {-Ball of radius } \pi ; \quad x \sim y: \Leftrightarrow x=-y \vee x=y
$$

Dynamics in homogeneous spaces

Example continues: \mathbb{S}^{2} with (quatratic) matrix Lie group $\mathrm{SO}(3)$.

$$
\mathrm{SO}(n)=\left\{\mathbf{A} \in \operatorname{Mat}(n): \mathbf{A}^{\top} \mathbf{A}=\mathbf{I}_{n}, \operatorname{det}(\mathbf{A})=+1\right\}
$$

Lie group

Sketch for $\mathrm{SO}(3) \cong \operatorname{lnt} \mathbb{B}_{r=\pi}^{3} \cup \partial \mathbb{B}_{r=\pi}^{3} / \sim$:

$$
\operatorname{Mat}(n)-\text { space of real } n \times n \text { matrices; } \mathbb{B}_{r=\pi}^{3}-3 \text {-Ball of radius } \pi ; \quad x \sim y: \Leftrightarrow x=-y \vee x=y
$$

Dynamics in homogeneous spaces

Example continues: \mathbb{S}^{2} with (quatratic) matrix Lie group $\mathrm{SO}(3)$.

$$
\mathrm{SO}(n)=\left\{\mathbf{A} \in \operatorname{Mat}(n): \mathbf{A}^{\top} \mathbf{A}=\mathbf{I}_{n}, \operatorname{det}(\mathbf{A})=+1\right\}
$$

Lie group

$$
\mathfrak{s o}(n)=\left\{\mathbf{A} \in \operatorname{Mat}(n): \mathbf{A}+\mathbf{A}^{\top}=\mathbf{0}_{n}\right\}
$$

Lie algebra (Vector space together with Lie bracket $[\cdot, \cdot]$)

Sketch for $\mathrm{SO}(3) \cong \operatorname{Int} \mathbb{B}_{r=\pi}^{3} \cup \partial \mathbb{B}_{r=\pi}^{3} / \sim$:

Dynamics in homogeneous spaces

Example continues: \mathbb{S}^{2} with (quatratic) matrix Lie group $\mathrm{SO}(3)$.

$$
\mathrm{SO}(n)=\left\{\mathbf{A} \in \operatorname{Mat}(n): \mathbf{A}^{\top} \mathbf{A}=\mathbf{I}_{n}, \operatorname{det}(\mathbf{A})=+1\right\}
$$

Lie group

$$
\mathfrak{s o}(n)=\left\{\mathbf{A} \in \operatorname{Mat}(n): \mathbf{A}+\mathbf{A}^{\top}=\mathbf{0}_{n}\right\}
$$

Lie algebra (Vector space together with Lie bracket $[\cdot, \cdot]$)

Sketch for $\mathrm{SO}(3) \cong \operatorname{lnt} \mathbb{B}_{r=\pi}^{3} \cup \partial \mathbb{B}_{r=\pi}^{3} / \sim$:

$$
\operatorname{Mat}(n)-\text { space of real } n \times n \text { matrices; } \mathbb{B}_{r=\pi}^{3}-3 \text {-Ball of radius } \pi ; \quad x \sim y: \Leftrightarrow x=-y \vee x=y
$$

SDEs in (quadratic) matrix Lie groups

Leveraging the Lie algebra \mathfrak{g}, we can define (Itô) SDEs in a (quadratic) matrix Lie group \mathcal{G} of the form

$$
\mathrm{d} G_{t}=\left(\mathbf{v}_{0}(t) \mathrm{d} t+\sum_{i=1}^{m} \mathrm{~d} w_{t}^{i} \mathbf{V}_{i}\right) G_{t}, \quad G_{0}=\mathbf{I}_{n} .
$$

SDEs in (quadratic) matrix Lie groups

Leveraging the Lie algebra \mathfrak{g}, we can define (Itô) SDEs in a (quadratic) matrix Lie group \mathcal{G} of the form

$$
\begin{aligned}
& \mathbf{V}_{0}(t)=\mathbf{K}(t)+\frac{1}{2} \sum_{i=1}^{m} \mathbf{V}_{i}^{2} \\
& \mathbf{K}(t), \mathbf{V}_{1}, \ldots, \mathbf{V}_{m} \in \mathfrak{g}
\end{aligned}
$$

$$
\mathrm{d} G_{t}=\left(\mathbf{V}_{0}(t) \mathrm{d} t+\sum_{i=1}^{m} \mathrm{~d} w_{t}^{i} \mathbf{V}_{i}\right) G_{t}, \quad G_{0}=\mathbf{I}_{n}
$$

SDEs in (quadratic) matrix Lie groups

Leveraging the Lie algebra \mathfrak{g}, we can define (Itô) SDEs in a (quadratic) matrix Lie group \mathcal{G} of the form

$$
\mathbf{V}_{0}(t)=\mathbf{K}(t)+\frac{1}{2} \sum_{i=1}^{m} \mathbf{V}_{i}^{2}
$$

$$
\mathrm{d} G_{t}=\left(\mathbf{V}_{0}(t) \mathrm{d} t+\sum_{i=1}^{m} \mathrm{~d} w_{t}^{i} \mathbf{V}_{i}\right) G_{t}, \quad G_{0}=\mathbf{I}_{n}
$$

$$
\mathbf{K}(t), \mathbf{V}_{1}, \ldots, \mathbf{V}_{m} \in \mathfrak{g}
$$

SDEs in (quadratic) matrix Lie groups

Leveraging the Lie algebra \mathfrak{g}, we can define (Itô) SDEs in a (quadratic) matrix Lie group \mathcal{G} of the form

$$
\mathbf{V}_{0}(t)=\mathbf{K}(t)+\frac{1}{2} \sum_{i=1}^{m} \mathbf{V}_{i}^{2}
$$

$$
\mathbf{K}(t), \mathbf{V}_{1}, \ldots, \mathbf{V}_{m} \in \mathfrak{g}
$$

$$
\mathrm{d} G_{t}=\left(\mathbf{V}_{0}(t) \mathrm{d} t+\sum_{i=1}^{m} \mathrm{~d} w_{t}^{i} \mathbf{V}_{i}\right) G_{t}, \quad G_{0}=\mathbf{I}_{n}
$$

This induces an SDE for $Z=G \cdot Z_{0}$ in the homogeneous space :

$$
\mathrm{d} Z_{t}=\left(\mathbf{V}_{0}(t) \mathrm{d} t+\sum_{i=1}^{m} \mathrm{~d} w_{t}^{i} \mathbf{V}_{i}\right) Z_{t}, \quad Z_{0} \sim \mathcal{P}
$$

\mathcal{P}... distribution over the initial state.

SDEs in (quadratic) matrix Lie groups

Leveraging the Lie algebra \mathfrak{g}, we can define (Itô) SDEs in a (quadratic) matrix Lie group \mathcal{G} of the form

$$
\mathbf{V}_{0}(t)=\mathbf{K}(t)+\frac{1}{2} \sum_{i=1}^{m} \mathbf{V}_{i}^{2}
$$

$$
\mathbf{K}(t), \mathbf{V}_{1}, \ldots, \mathbf{V}_{m} \in \mathfrak{g}
$$

$$
\mathrm{d} G_{t}=\left(\mathbf{V}_{0}(t) \mathrm{d} t+\sum_{i=1}^{m} \mathrm{~d} w_{t}^{i} \mathbf{V}_{i}\right) G_{t}, \quad G_{0}=\mathbf{I}_{n}
$$

This induces an SDE for $Z=G \cdot Z_{0}$ in the homogeneous space :

$$
\mathrm{d} Z_{t}=\left(\mathbf{V}_{0}(t) \mathrm{d} t+\sum_{i=1}^{m} \mathrm{~d} w_{t}^{i} \mathbf{V}_{i}\right) Z_{t}, \quad Z_{0} \sim \mathcal{P}
$$

\mathcal{P}... distribution over the initial state.

To implement a drift parameterization depending on \mathbf{x}, we realize $\mathbf{K}^{\boldsymbol{\phi}}(\mathbf{x})(t):[0, T] \rightarrow \mathfrak{g}$ via Chebyshev polynomials with learnable coefficients.

SDEs in (quadratic) matrix Lie groups

Leveraging the Lie algebra \mathfrak{g}, we can define (Itô) SDEs in a (quadratic) matrix Lie group \mathcal{G} of the form

$$
\mathrm{d} G_{t}=\left(\mathbf{V}_{0}(t) \mathrm{d} t+\sum_{i=1}^{m} \mathrm{~d} w_{t}^{i} \mathbf{V}_{i}\right) G_{t}, \quad G_{0}=\mathbf{I}_{n}
$$

$\mathbf{K}(t), \mathbf{V}_{1}, \ldots, \mathbf{V}_{m} \in \mathfrak{g}$ T

The prior $p_{\boldsymbol{\theta}}(\mathbf{z})$ and approximate posterior $q_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x})$ are determined by an SDE of this form!

\mathcal{P}... distribution over the initial state.

To implement a drift parameterization depending on \mathbf{x}, we realize $\mathbf{K}^{\phi}(\mathbf{x})(t):[0, T] \rightarrow \mathfrak{g}$ via Chebyshev polynomials with learnable coefficients.

The overall objective (for our example of latent paths on \mathbb{S}^{n-1}):

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{\phi}, \boldsymbol{\theta} ; \mathbf{x}^{i}\right)= & D_{\mathrm{KL}}\left(\mathcal{P}_{0}^{\boldsymbol{\phi}}\left(Z_{0} \mid \mathbf{x}^{\mathbf{i}}\right) \| \mathcal{U}_{\mathbb{S}^{n-1}}\right) \\
& +\frac{1}{2} \int_{0}^{T} \int_{\mathbb{S}^{n-1}} q_{Z_{t}}(\mathbf{z})\left\|\mathbf{K}^{\boldsymbol{\phi}}\left(\mathbf{x}^{i}\right)(t) \mathbf{z}\right\|^{2} \mathrm{~d} \mathbf{z} \mathrm{~d} t \\
& +\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i} \mid \mathbf{z}\right)\right]
\end{aligned}
$$

Learning objective

The overall objective (for our example of latent paths on \mathbb{S}^{n-1}):

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{\phi}, \boldsymbol{\theta} ; \mathbf{x}^{i}\right)= & D_{\text {KL }}\left(\mathcal{P}_{0}^{\boldsymbol{\phi}}\left(\mathrm{Z}_{0} \mid \mathbf{x}^{\mathbf{i}}\right) \| \mathcal{U}_{\mathbb{S}^{n-1}}\right) \\
& +\frac{1}{2} \int_{0}^{T} \int_{\mathbb{S}^{n-1}} q_{Z_{t}}(\mathbf{z})\left\|\mathbf{K}^{\boldsymbol{\phi}}\left(\mathbf{x}^{i}\right)(t) \mathbf{z}\right\|^{2} \mathrm{~d} \mathbf{z} \mathrm{~d} t \\
& +\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i} \mid \mathbf{z}\right)\right]
\end{aligned}
$$

KL-div. to uniform distribution on \mathbb{S}^{n-1}

Learning objective

The overall objective (for our example of latent paths on \mathbb{S}^{n-1}):

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{\phi}, \boldsymbol{\theta} ; \mathbf{x}^{i}\right)= & D_{\mathrm{KL}}\left(\mathcal{P}_{0}^{\boldsymbol{\phi}}\left(Z_{0} \mid \mathbf{x}^{\mathbf{i}}\right) \| \mathcal{U}_{\mathbb{S}^{n-1}}\right) \\
& +\frac{1}{2} \int_{0}^{T} \int_{\mathbb{S}^{n-1}} q_{Z_{t}}(\mathbf{z})\left\|\mathbf{K}^{\phi}\left(\mathbf{x}^{i}\right)(t) \mathbf{z}\right\|^{2} \mathrm{~d} \mathbf{z} \mathrm{~d} t \\
& +\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i} \mid \mathbf{z}\right)\right]
\end{aligned}
$$

KL-div. between approximate posterior and a driftless prior
(essentially penalizes large rotations)

Learning objective

The overall objective (for our example of latent paths on \mathbb{S}^{n-1}):

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{\phi}, \boldsymbol{\theta} ; \mathbf{x}^{i}\right)= & D_{\mathrm{KL}}\left(\mathcal{P}_{0}^{\boldsymbol{\phi}}\left(Z_{0} \mid \mathbf{x}^{\mathbf{i}}\right) \| \mathcal{U}_{\mathbb{S}^{n-1}}\right) \\
& +\frac{1}{2} \int_{0}^{T} \int_{\mathbb{S}^{n-1}} q_{Z_{t}}(\mathbf{z})\left\|\mathbf{K}^{\boldsymbol{\phi}}\left(\mathbf{x}^{i}\right)(t) \mathbf{z}\right\|^{2} \mathrm{~d} \mathbf{z} \mathrm{~d} t \\
& +\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i} \mid \mathbf{z}\right)\right]
\end{aligned}
$$

Expected log-likelihood of observed path
given the latent path

Learning objective

The overall objective (for our example of latent paths on \mathbb{S}^{n-1}):

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{\phi}, \boldsymbol{\theta} ; \mathbf{x}^{i}\right)= & D_{\text {KL }}\left(\mathcal{P}_{0}^{\boldsymbol{\phi}}\left(\mathrm{Z}_{0} \mid \mathbf{x}^{\mathbf{i}}\right) \| \mathcal{U}_{\mathbb{S}^{n-1}}\right) \\
& +\frac{1}{2} \int_{0}^{T} \int_{\mathbb{S}^{n-1}} q_{Z_{t}}(\mathbf{z})\left\|\mathbf{K}^{\boldsymbol{\phi}}\left(\mathbf{x}^{i}\right)(t) \mathbf{z}\right\|^{2} \mathrm{~d} \mathbf{z} \mathrm{~d} t \\
& +\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{i}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{i} \mid \mathbf{z}\right)\right]
\end{aligned}
$$

- Sampling from the approximate posterior:

We use a one-step geometric Euler-Maryuama SDE solver, that is particularly easy to implement!

Some results

Five training samples of handwritten rotating 3's from Rotating MNIST

Some results

PhysioNet (2012) interpolation task (see [Shukla \& Marlin, 2021]):
Time series from testing portion

Some results

PhysioNet (2012) interpolation task (see [Shukla \& Marlin, 2021]):
Time series from testing portion

Some results

PhysioNet (2012) interpolation task (see [Shukla \& Marlin, 2021]):
Time series from testing portion

Some results

PhysioNet (2012) interpolation task (see [Shukla \& Marlin, 2021]):
Time series from testing portion

Some results

PhysioNet (2012) interpolation task (see [Shukla \& Marlin, 2021]):
Time series from testing portion

	\downarrow MSE $\left(\times 10^{-3}\right)$	
CRU	5.11 ± 0.40	[Schirmer et al., 2022]
f-CRU	5.24 ± 0.49	[Schirmer et al., 2022]
mTAND-Full	3.61 ± 0.08	[Shukla \& Marlin, 2021]
mTAND-ODE	3.38 ± 0.03	[Shukla \& Marlin, 2021] (with added ODE)
Ours	$\mathbf{3 . 1 1} \pm \mathbf{0 . 0 2}$	

Thanks for your attention!

Come see us at our poster \#1400
Wed 13 Dec 5 p.m. CST @ Great Hall \& Hall B1+B2

References

[G. Marjanovic and V. Solo]
"Numerical Methods for Stochastic Differential Equations in Matrix Lie Groups Made Simple".
In: IEEE Transactions on Automatic Control 63.12 (2018), pp. 4035-4050.
[M. Muniz, M. Ehrhardt, M. Günther, and R. Winkler]
"Higher strong order methods for linear Itô SDEs on matrix Lie groups".
In: BIT Numerical Mathematics 62.4 (2022), pp.1095-1119.
[Ç. Yildiz, M. Heinonen, and H. Lahdesmäki]
"ODE ${ }^{2}$ VAE: Deep generative second order ODEs with Bayesian neural networks".
In: NeurlPS. 2019.
[M. Schirmer, M. Eltayeb, S. Lessmann, and M. Rudolph]
"Modeling Irregular Time Series with Continuous Recurrent Units".
In: ICML. 2022.
[S. N. Shukla and B. M. Marlin]
"Multi-Time Attention Networks for Irregularly Sampled Time Series".
In: ICLR. 2021.

[^0]: KL divergence between approximate posterior and the prior path distribution

