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ODE Models in Convex Optimization

min
x∈Rd

f(x)

Nesterov’s accelerated gradient method (AGM):1

yk+1 = xk − s∇f (xk)

xk+1 = yk+1 +
k − 1

k + 2
(yk+1 − yk) .

Continuous-time limit of AGM:2

Ẍ(t) +
3

t
Ẋ(t) +∇f(X(t)) = 0.

Goal: Develop a systematic methodology for
analyzing convergence rates of ODE models.

1Nesterov, “A method for solving the convex programming problem with convergence
rate O(1/k2)”.

2Su, Boyd, and Candes, “A differential equation for modeling Nesterov’s accelerated
gradient method: Theory and insights”.
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Discrete-Time PEP (Drori and Teboulle)

General form of first-order methods:

xk+1 = xk −
k∑

j=0

hk,j∇f(xj), (1)

parametrized by the coefficients {hk,j}.

Proving convergence rate of (1)
⇕

Veryfing positive semidefiniteness of matrixa

ax⊤Mx ≥ 0 ∀x.

Drori and Teboulle, “Performance of first-order methods for smooth convex
minimization: A novel approach”.
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Continuous-Time PEP (Ours)

General form of continuous-time models:

Ẋ(t) = −
∫ t

0
H(t, τ)∇f(X(τ)) dτ, (2)

parametrized by the H-kernel H(t, τ).4

Proving convergence rate of (2)
⇕

Veryfing positive semidefiniteness of integral kernela

a
∫∫

k(t, τ)f(t)f(τ) dtdτ ≥ 0 ∀f .

4Kim and Yang, “Unifying Nesterov’s Accelerated Gradient Methods for Convex and
Strongly Convex Objective Functions”.
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Continuous PEP for Minimizing Function Values

Ẋ(t) = −
∫ t

0
H(t, τ)∇f(X(τ)) dτ (2)

Theorem (Function Value PEP)

Given ν > 0, Lagrange multiplier λ(t). Then, (2) achieves

f(X(T ))− f(x∗) ≤ ν∥x0 − x∗∥2,

if the following symmetric PEP kernel is positive semidefinite:

S(t, τ) = ν

(
λ(t)H(t, τ) + λ̇(t)

∫ t

τ
H(s, τ) ds

)
− 1

2
λ̇(t)λ̇(τ), t ≥ τ.

Can be extended to strongly convex case (µ > 0).
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Continuous PEP for Minimizing Function Values

AGM ODE:

Ẍ(t) +
3

t
Ẋ(t) +∇f(X(t)) = 0

⇔ Ẋ(t) = −
∫ t

0

τ3

t3
∇f(X(τ)) dτ.

With λ(t) = t2

T 2 , we have S(t, τ) =
(
ν − 2

T 2

)
tτ
T 2 ⪰ 0 when ν ≥ 2

T 2 .

0 T

t

0

T

τ

t

0

T

τ

0

T

S
(t
, τ

)

f(X(T ))− f(x∗) ≤ 2

T 2
∥x0 − x∗∥2.
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Continuous PEP for Minimizing Gradient Norms

Ẋ(t) = −
∫ t

0
H(t, τ)∇f(X(τ)) dτ (2)

Theorem (Gradient Norm PEP)

Given ν > 0, Lagrange multiplier λ(t). Then, (2) achieves

∥∇f(X(T ))∥2 ≤ 4ν(f(x0)− f(x∗)),

if the following symmetric PEP kernel is positive semidefinite:

S(t, τ) = ν

(
H(t, τ)

λ(τ)
+

λ̇(τ)

λ(τ)2

∫ t

τ
H(t, s) ds

)
− λ̇(t)λ̇(τ)

2λ(t)2λ(τ)2
, t ≥ τ.

Can be extended to strongly convex case (µ > 0).

Can also prove convergence rates on ∥Ẋ(T )∥2.
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Continuous PEP for Minimizing Gradient Norms

OGM-G ODE:5

Ẍ(t) +
3

T − t
Ẋ(t) +∇f(X(t)) = 0

⇔ Ẋ(t) = −
∫ t

0

(T − t)3

(T − τ)3
∇f(X(τ)) dτ.

With λ(t) = T 2

(T−t)2 , we have S(t, τ) =
(
ν − 2

T 2

) (T−t)(T−τ)
T 2 ⪰ 0 when ν ≥ 2

T 2 .

0 T

t

0

T

τ

t

0

T τ
0

T

S
(t
, τ

)

∥∇f(X(T ))∥2 ≤ 8

T 2
(f(x0)− f(x∗)).

5Suh, Roh, and Ryu, “Continuous-Time Analysis of Accelerated Gradient Methods
via Conservation Laws in Dilated Coordinate Systems”.
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Correspondence Between Minimizing Function Values and
Minimizing Gradient Norms

Ẋ(t) = −
∫ t

0

τ3

t3
∇f(X(τ)) dτ

SF (t, τ) =

(
ν − 2

T 2

)
tτ

T 2

0 T

t

0

T

τ

Ẋ(t) = −
∫ t

0

(T − t)3

(T − τ)3
∇f(X(τ)) dτ

SG(t, τ) =

(
ν − 2

T 2

)
(T − t)(T − τ)

T 2

0 T

t

0

T

τ

Anti-transpose relationships:

HF (t, τ) = HG(T − τ, T − t)

SF (t, τ) = SG(T − τ, T − t)
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Correspondence Between Minimizing Function Values and
Minimizing Gradient Norms

Ẋ(t) = −
∫ t

0

HF (t, τ)∇f(X(τ)) dτ (F)

Ẋ(t) = −
∫ t

0

HG(t, τ)∇f(X(τ)) dτ (G)

Theorem (Correspondence between F and G)

If HF (t, τ) = HG(T − τ, T − t), then the following are equivalent:

(F) achieves f(X(T ))− f(x∗) ≤ ν∥x0 − x∗∥2.
(G) achieves ∥∇f(X(T ))∥2 ≤ 4ν(f(x0)− f(x∗)).

Can be extended to strongly convex case (µ > 0).
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Conclusion

Contributions

We introduced Continuous PEP, a systematic methodology for analyzing
ODE models in convex optimization.

Enhances the understanding of continuous-time analysis.

Unlocks new opportunities for studying discrete-time PEP.
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