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Regularization
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Regularization on Function Spaces

▶ Regularization is one of the most fundamental topics in optimization,
statistics and machine learning.

▶ To get sparsity in estimating a parameter u ∈ Rd , an ℓq penalty term,
∥u∥q , is usually added to the objective function.

▶ What is the probabilistic distribution corresponding to such ℓq penalty?

▶ What is the correct stochastic process corresponding to ∥u∥q when we
model functions u ∈ Lq?

▶ This is important for statistically modeling high-dimensional objects
such as images, with penalty to preserve certain properties, e.g. edges
in the image.
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Regularization on Function Spaces
literature review

▶ Gaussian process (GP) can be viewed as L2 regularization on function
spaces, sometimes over-smooth [23, 14].

▶ L1 penalty based priors include Laplace random field [22, 20, 18] and
Besov process [19, 10, 15, 11].

▶ Student-t process (TP) [26] and elliptical process [1] with heavy tail are
proposed as alternatives to GP.

▶ We propose the q-exponential process (Q-EP) based on q-exponential
distribution with density proportional to exp (− 1

2 |u|
q).

Figure: Image of satellite: true image, blurred observation, and reconstructions by GP, Besov and Q-EP
models with relative errors 75.19%, 21.94% and 20.35% respectively.
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Besov Process and Q-exponential Distribution

▶ Besov process [19, 10] is proposed to impose L1 regularization as an
“edge-preserving" prior for images:

u(x) =
∞∑
ℓ=1

γℓuℓϕℓ(x), uℓ
iid∼ πq(·) ∝ exp (− 1

2
| · |q) (1)

▶ How can we generalize it to a multivariate distribution and further to a
stochastic process?

▶ By the Kolmogorov’ extension theorem [21], one should require
1. exchangeability of the joint distribution, i.e. p(ξ1:J) = p(ξτ(1:J)) for any

finite permutation τ ;
2. consistency of marginalization, i.e. p(ξ1) =

∫
p(ξ1, ξ2)dξ2.

▶ Gomez [13] provided one possibility of a multivariate EP distribution,
denoted as EPd(µ,C, q), with the following density:

p(u|µ,C, q) =
qΓ( d2 )

2Γ( dq )
2−

d
q π− d

2 |C|− 1
2 exp

{
− 1

2

[
(u− µ)TC−1(u− µ)

] q
2

}
(2)
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Generalization of Q-exponential Distribution
marginalization consistency

Figure: Inconsistent (Gomez’s) EP distribution EPd(µ, C, q) (left) vs. consistent Q-exponential distribution
q−EDd(µ, C) (right). Both can be sampled using (??) with Rq ∼ Γ(α = d

q , β = 1
2 ) and

Rq ∼ Γ
(
α = d

2 , β = 1
2

)
respectively. Note there is significant discrepancy between the marginalization of

EP3(µ, C, q) and EP2(µ, C, q). However, the marginalization of q−ED3(µ, C) coincides with
q−ED2(µ, C). Empirical densities are estimated based on 10000 samples (shown as dots).
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Q-Exponential Process
consistent generalization

Definition
A multivariate q-exponential distribution, denoted as q−EDd(µ,C), has the
following density

p(u|µ,C, q) = q

2
(2π)−

d
2 |C|− 1

2 r(
q
2−1) d2 exp

{
− r

q
2

2

}
,

r(u) = (u− µ)TC−1(u− µ)

(3)

▶ If u ∼ q−EDd(0,C), then we denote u∗ ∼ q−ED∗
d(0,C) following a

scaled q-exponential distribution.

Definition (Q-EP)

A (centered) q-exponential process u(x) with kernel C, q−EP(0, C), is a
collection of random variables such that any finite set,
u = (u(x1), · · · u(xd)), follows a scaled multivariate q-exponential
distribution, i.e. u ∼ q−ED∗

d(0,C).
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Connection to Besov Process
direct control on the correlation structure through C

▶ Q-EP and Besov share equivalent series representations.

Theorem (Karhunen-Loéve)
If u(x) ∼ q−EP(0, C) with C having eigen-pairs {λℓ, ϕℓ(x)}∞ℓ=1 such that
Cϕℓ(x) = ϕℓ(x)λℓ, ∥ϕℓ∥2 = 1 for all ℓ ∈ N and

∑∞
ℓ=1 λℓ < ∞, then we

have the following series representation for u(x):

u(x) =
∞∑
ℓ=1

uℓϕℓ(x), uℓ :=

∫
D
u(x)ϕℓ(x)

ind∼ q−ED∗(0, λℓ) (4)

where E[uℓ] = 0 and Cov(uℓ, uℓ′) = λℓδℓℓ′ with Dirac function δℓℓ′ = 1 if
ℓ = ℓ′ and 0 otherwise.

▶ If we factor
√
λℓ out of uℓ, we have the following expansion for Q-EP

more comparable to (1) for Besov:

u(x) =
∞∑
ℓ=1

√
λℓuℓϕℓ(x), uℓ

iid∼ q−ED(0, 1) ∝ πq(·) (5)

Li, S., M. OConnor, S. Lan | Q-Exponential Process



8

Bayesian Modeling
conjugate and non-conjugate inference

▶ Let L(·; 0, Σ) be the likelihood model, and µ0 be the prior.

y = u(x) + ε, ε ∼ L(·; 0, Σ)

u ∼ µ0(du)
(6)

▶ Conjugate case: µ0 = q−EP(0, C) and L(·; 0,C) = q−ED(0,C)

Theorem (Posterior Prediction)
Given covariates x = {xi}Ni=1 and observations y = {yi}Ni=1 following q−ED in the
model (6) with q−EP prior for the same q > 0, we have the following posterior
predictive distribution for u(x∗) at (a) new point(s) x∗:

u(x∗)|y, x, x∗ ∼ q−ED(µ∗,C∗), µ∗ = CT
∗(C+Σ)−1y, C∗ = C∗∗ − CT

∗(C+Σ)−1C∗
(7)

where C = C(x, x), C∗ = C(x, x∗), and C∗∗ = C(x∗, x∗).

▶ Non-conjugate case: posterior sampling by dimension-independent
MCMC algorithms [9, 6, 3, 4, 5] with the pushforward µ0 = T#ν0:

u = T (z) = Lz∥z∥
2
q−1, z = T−1(u) = L−1u∥L−1u∥

q
2−1, z ∼ ν0 (8)
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Time Series Modeling
modeling jumps or turnings

(a) Time series with sharp turnings (model fitting). (b) Time series with turnings (prediction).

(c) Tesla stock prices in 2022 (model fitting). (d) Tesla stock prices in 2022 (prediction).

Figure: (a)(c) MAP estimates by GP (left), Besov (middle) and Q-EP (right) models. (b)(d)
Predictions by GP (left) and Q-EP (right) models. Orange dots are actual realizations (data
points). Blue solid lines are true trajectories. Black ticks indicate the training data points. Red
dashed lines are MAP estimates. Red dot-dashed lines are predictions with shaded region being
credible bands.
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Computed Tomography Imaging
preserving the edges

Figure: CT of human head (upper) and torso (lower): true image, observation
(sinogram), and MAP estimates by GP, Besov and Q-EP models with relative errors
29.99%, 22.41% and 22.24% (for head) and 26.11%, 21.77% and 21.53% (for torso)
respectively.

Li, S., M. OConnor, S. Lan | Q-Exponential Process



11

Computed Tomography Imaging
preserving the edges

Table: Posterior estimates of Shepp–Logan phantom by GP, Besov and Q-EP prior
models: relative error, RLE := ∥û− u†∥/∥u†∥, of MAP (û = u∗) and posterior mean
(û = u) respectively, log-likelihood (LL), peak signal-to-noise ratio (PSNR) [12],
structured similarity index (SSIM) [28], Haar wavelet-based perceptual similarity index
(HaarPSI) [24]. Numbers in the bracket are standard deviations obtained repeating
the experiments for 10 times with different random seeds.

MAP Posterior Mean

GP Besov Q-EP GP Besov Q-EP

RLE 0.6810 0.7027 0.4087 0.4917(6.16e-7) 0.4894(3.53e-5) 0.4890(4.79e-5)
LL -1.55e+6 -1.54e+6 -1.57e+5 -5.21e+5(8.47) -4.80e+5(196.34) -4.56e+5(307.97)
PSNR 15.5531 15.2806 19.9887 18.3826(1.09e-5) 18.4226(6.27e-4) 18.4303(8.51e-4)
SSIM 0.4028 0.3703 0.5967 0.5561(3.92e-7) 0.5535(2.38e-4) 0.5403(5.26e-4)
HaarPSI 0.0961 0.0870 0.3105 0.3126(1.52e-8) 0.3126(3.36e-4) 0.3122(3.06e-4)
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Conclusion

▶ In this work, we propose the q-exponential process (Q-EP) as a prior
on Lq functions with a flexible parameter q > 0 to control the degree
of regularization.

▶ Usually, q = 1 is adopted to capture abrupt changes or sharp contrast
in data such as edges in the image.

▶ Compared with GP, Q-EP can impose sharper regularization through q.
▶ Compared with Besov, Q-EP enjoys the explicit formula with more

control on the correlation structure as GP.
▶ In future, we will extend this work to spatiotemporal domain to model

dynamically changing images.
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