

Hierarchical Integration Diffusion Model for Realistic Image Deblurring

Zheng Chen¹, Yulun Zhang^{2*}, Ding Liu³, Bin Xia⁴, Jinjin Gu^{5,6}, Linghe Kong^{1*}, Xin Yuan⁷

¹Shanghai Jiao Tong University, ²ETH Zürich, ³Bytedance Inc, ⁴Tsinghua University, ⁵Shanghai AI Laboratory, ⁶The University of Sydney, ⁷Westlake University

Motivation

- **Regression-based** methods: Show remarkable success, especially in terms of distortionbased metrics (e.g., PSNR). But recover images with fewer details.
- **Generative models**: Generate more perceptually plausible results. But produce undesired artifacts not present in the original images.
- **Deblurring**: non-uniform blur in real scenarios.

Motivation

- Therefore, we design HI-Diff, which hierarchically integrates Transformer (Regressionbased) and Diffusion model (Generative) for realistic image deblurring.
- HI-Diff leverages the power of diffusion models to generate prior in compact latent space.
- The generate prior is applied to guide the regression-based deblurring process from multiple scales with the hierarchical integration module.

Framework

• Compositions: Transformer and diffusion model.

Transformer

• Hierarchical encoderdecoder architecture, guided by prior (z).

Diffusion model

• Perform in the highly compacted latent space to generate prior.

Latent Encoder (LE)

• Compress the image into a compact latent representation for DM.

Hierarchical Integration Module (HIM)

- Effectively integrate the prior feature and intermediate feature of Transformer.
- The multiple-scale prior (*z*₁, *z*₂, *z*₃) adapts to different scale intermediate features with cross-attention:

 $\mathbf{Q} = \mathbf{W}_Q \mathbf{X}_r, \mathbf{K} = \mathbf{W}_K \mathbf{z}_i, \mathbf{V} = \mathbf{W}_V \mathbf{z}_i,$

 $\operatorname{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \operatorname{SoftMax}(\mathbf{Q}\mathbf{K}^T/\sqrt{\hat{C}})\cdot\mathbf{V}$

Training

- Stage one, Loss: \mathcal{L}_{deblur}
- Stage two (joint training), Loss: $\mathcal{L}_{deblur} + \mathcal{L}_{diffusion}$

Inference

• Input: blurry input image, **I**_{Blur}.

Method	Prior	Multi-Scale	Joint-training	Params (M)	FLOPs (G)	PSNR (dB)	SSIM
Basline	×	×	×	19.13	117.25	31.96	0.9528
Single-Guide	\checkmark	×	\checkmark	21.98	125.39	32.00	0.9534
Split-Training	\checkmark	\checkmark	×	23.99	125.47	30.73	0.9434
HI-Diff (ours)	\checkmark	\checkmark	\checkmark	23.99	125.47	32.24	0.9558

Ablation

- Prior improves performance.
- Hierarchical Integration is effective.
- DM is efficient in highly compact latent space.

Mathad	GoPro [28]		HIDE [39]		RealBlur-R [34]		RealBlur-J [34]	
Method	PSNR \uparrow	SSIM \uparrow						
DeblurGAN [22]	28.70	0.858	24.51	0.871	33.79	0.903	27.97	0.834
DeepDeblur [28]	29.08	0.914	25.73	0.874	32.51	0.841	27.87	0.827
DeblurGAN-v2 [23]	29.55	0.934	26.61	0.875	35.26	0.944	28.70	0.866
SRN [43]	30.26	0.934	28.36	0.915	35.66	0.947	28.56	0.867
DBGAN [56]	31.10	0.942	28.94	0.915	33.78	0.909	24.93	0.745
MT-RNN [30]	31.15	0.945	29.15	0.918	35.79	0.951	28.44	0.862
DMPHN [55]	31.20	0.940	29.09	0.924	35.70	0.948	28.42	0.860
SAPHN [42]	31.85	0.948	29.98	0.930	N/A	N/A	N/A	N/A
SPAIR [32]	32.06	0.953	30.29	0.931	N/A	N/A	28.81	0.875
MIMO-UNet+ [5]	32.45	0.957	29.99	0.930	35.54	0.947	27.63	0.837
TTFA [4]	32.50	0.958	30.55	0.935	N/A	N/A	N/A	N/A
MPRNet [54]	32.66	0.959	30.96	0.939	35.99	0.952	28.70	0.873
HINet [2]	32.71	0.959	30.32	0.932	35.75	0.949	28.17	0.849
Restormer [53]	32.92	0.961	31.22	0.942	36.19	0.957	28.96	0.879
Stripformer [44]	33.08	0.962	31.03	0.940	36.08	0.954	28.82	0.876
HI-Diff (ours)	33.33	0.964	31.46	0.945	36.28	0.958	29.15	0.890

		Dahlar CAN2	CDN		MDDN-4	DANI-4		
Dataset	Method	[23]	5RN [43]	[5]	[54]	[45]	[44]	(ours)
RealBlur-R [34]	PSNR ↑ SSIM ↑	36.44 0.935	38.65 0.965	N/A N/A	39.31 0.972	39.55 0.971	39.84 0.974	41.01 0.978
RealBlur-J [34]	PSNR ↑ SSIM ↑	29.69 0.870	31.38 0.909	31.92 0.919	31.76 0.922	32.00 0.9230	32.48 0.929	33.70 0.941
		-				-		

Synthetic

- Train only on GoPro.
- Performs well on synthetic datasets: GoPro and HIDE.
- Performs well on realworld dataset: RealBlur.
- Better generalization ability than others.

Real-World

- Train on the RealBlur.
- Outperforms other compared methods.

DBGAN [56] MIMO-UNet+ [5] GT Blurry RealBlur-J MPRNet [54] Restormer [53] Stripformer [44] HI-Diff (ours) Blurry DBGAN [56] DMPHN [55] MIMO-UNet+ [5] RWBI MPRNet [54] Stripformer [44] HI-Diff (ours) Restormer [53]

Visual comparison

• Our method reconstructs more accurate textures and sharper edges.

Method	DMPHN [55]	MIMO-UNet+ [5]	MPRNet [54]	HINet [2]	Restormer [53]	Stripformer [44]	HI-Diff (ours)	HI-Diff-2 (ours)
Params (M)	21.70	16.11	20.13	88.67	26.13	19.71	28.49	23.99
FLOPs (G)	195.44	150.68	760.02	67.51	154.88	155.03	142.62	125.47
PSNR (dB)	31.20	32.45	32.66	32.71	32.92	33.08	33.33	33.28

Model Size

• Our method achieves a better trade-off between performance and complexity.

Diffusion

• Blur images gradually become sharp as the reverse process proceeds.

Contribution

- We design a novel approach called the Hierarchical Integration Diffusion Model (HI-Diff) for realistic (synthetic and real-world) image deblurring.
- Our HI-Diff leverages the power of diffusion models to generate prior and hierarchically integrates priors into the deblurring process for better generalization in complex scenarios.
- Our HI-Diff achieves superior performance on synthetic and real-world blur datasets.

Poster

- Time: Wed 13 Dec 5 p.m. CST - 7 p.m. CST
- Place: Great Hall & Hall B1+B2 #909

Thanks!