Deep Recurrent Optimal Stopping

Niranjan Damera Venkata,

Digital and Transformation Organization, HP Inc., Chennai, India

Chiranjib Bhattacharyya,

Dept. of CSA and RBCCPS,

Indian Institute of Science, Bangalore, India

NeurIPS 2023, New Orleans

Optimal stopping not well-developed in non-Markovian settings

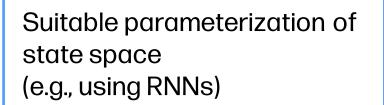
What is the optimal time to exercise a stock option?

- This is an **optimal stopping problem**
- Typically solved in the **restrictive Markovian setting** invoking the efficient market hypothesis
- State of the art methods are based on deep neural networks (DNNs)

This work explores **model-free** optimal stopping algorithms effective for **non-Markovian** settings, leveraging recurrent neural networks (**RNN**s).

Non-Markovian settings pose fundamental challenges!

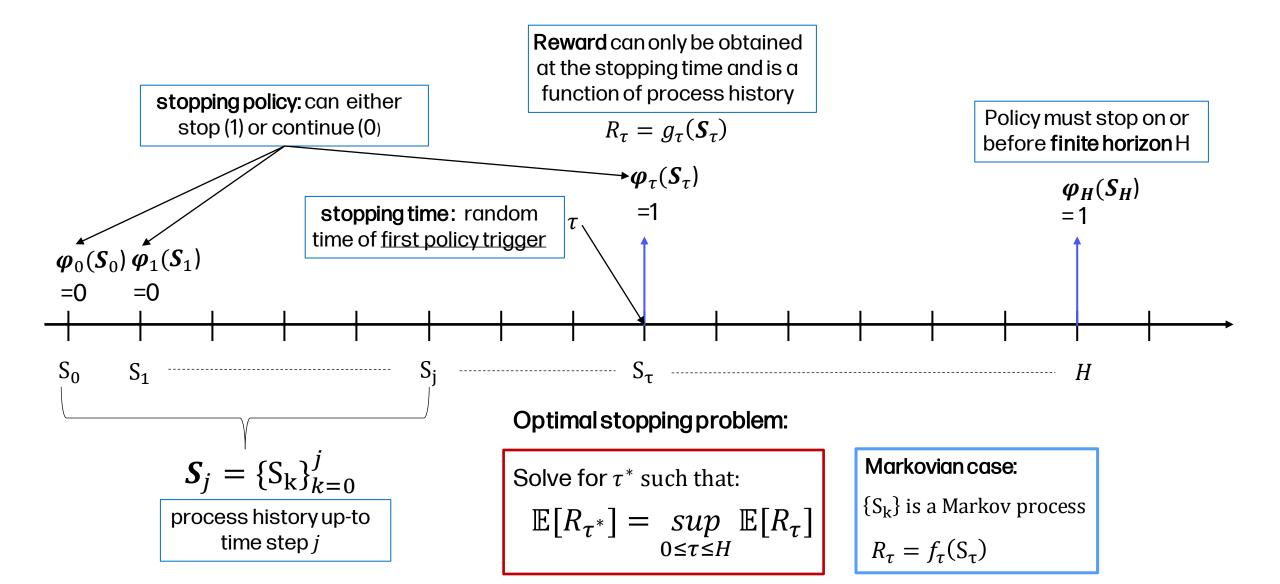
Curse of dimensionality: Explosion of augmented state and parameter space



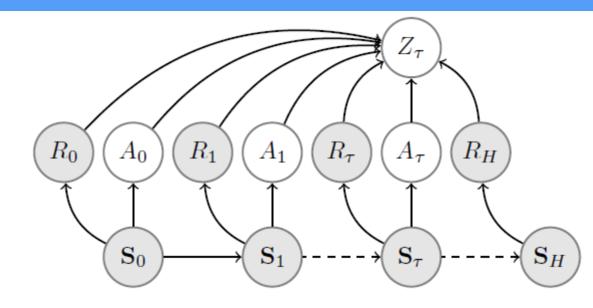
Curse of non-Markovianity: recursive value estimation algorithms are not suitable

Explore direct policy learning methods (e.g., policy gradients)

Non-Markovian optimal stopping problem we consider the discrete-time finite-horizon case

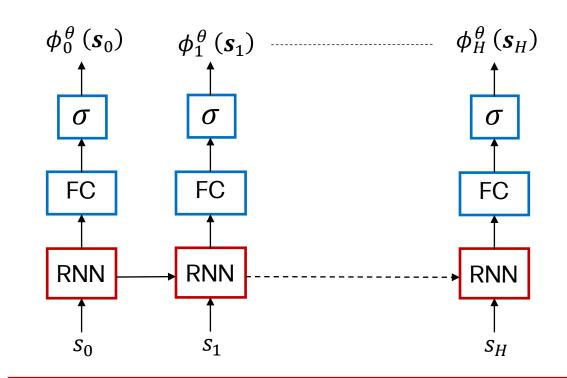


Bayes net reward augmented trajectory model (RATM) represents non-Markovian state-action-reward trajectories



at time step *j* :

 S_j : process history A_j : {0,1} policy actions R_j : reward achievable Z_j : {1,0}, 1 if reward is obtained when $\tau = j$



$$\mathbb{P}(A_j = 1 \mid \boldsymbol{S}_j) \coloneqq \phi_j^{\theta}(\boldsymbol{S}_j)$$

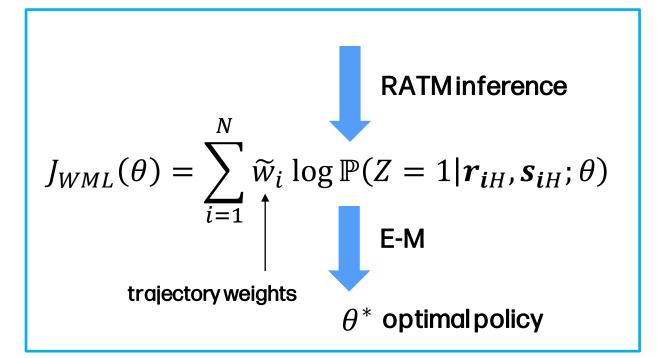
stochastic stopping policy $\phi_j^{\theta}(S_j)$ can be **parameterized by an RNN** preventing state and parameter space explosion.

Inference over RATM leads to direct policy optimization

is

$$Z := Z_0 \bigoplus_{\substack{\uparrow \\ XOR}} Z_1 \bigoplus_{\substack{\downarrow \\ XOR}} \cdots \bigoplus_{\substack{\downarrow \\ XOR}} Z_H \quad \begin{array}{c} \text{Binary } \operatorname{RV} Z = 1 \text{ if reward} \\ \text{obtained over a trajectory} \end{array}$$

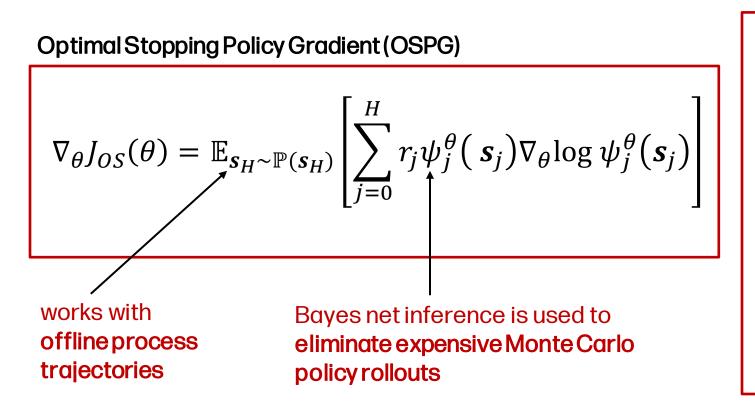
 $\mathbb{P}(Z = 1 | \mathbf{R}_H, \mathbf{S}_H; \theta)$ obtained via inference on RATM



Bayes net inference leads to direct policy optimization, mitigating the curse of non-Markovianity

Optimal stopping policy gradients (OSPG) offline policy gradient algorithm that eliminates Monte Carlo policy rollouts

Claim (OSPG): Incremental E-M with a single gradient step instead of full M-step is equivalent to a policy gradient method



• First policy gradient algorithm for optimal stopping

Offline algorithm without expensive
 Monte Carlopolicy rollouts

OSPG highlights

- Advantage over E-M is that it can be implemented with SGD.
- Optimizes value functions without recursion

Relationship of OSPG with Value function based methods

Claim (OSPG and Value functions): OSPG can equivalently be expressed using empirical stopping and continuation values

Value form of OSPG

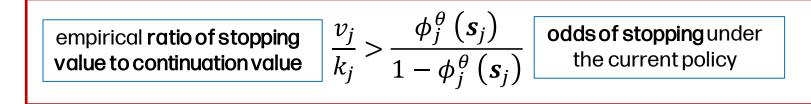
$$\nabla_{\theta} J_{OS}(\theta) = \mathbb{E}_{s_{H} \sim \mathbb{P}(s_{H})} \left[\sum_{j=0}^{H} \left\{ \frac{\nu_{j} \left(1 - \phi_{j}^{\theta} \left(s_{j} \right) \right) - k_{j} \phi_{j}^{\theta} \left(s_{j} \right)}{\phi_{j}^{\theta} \left(s_{j} \right) \left(1 - \phi_{j}^{\theta} \left(s_{j} \right) \right)} \right\} \nabla_{\theta} \phi_{j}^{\theta} \left(s_{j} \right) \right]$$

$$\nu_{j}: \text{empirical stopping value}$$

$$k_{j}: \text{empirical continuation value}$$

$$\text{calls for increasing stopping probability if:}$$

calls for increasing stopping probability if:



Empirical evaluations on computational finance benchmarks

Experiments in financial derivative pricing

- Pricing Bermudan max-call options
- Pricing American geometric-average call options
- Pricing non-Markovian financial derivatives

OSPG performs competitively with state-of-the-art option pricing methods even in Markovian settings while outperforming in non-Markovian settings!

More results and details in the paper.

Thanks!