On the Minimax Regret for Online Learning with Feedback Graphs

Khaled Eldowa ${ }^{1}$, Emmanuel Esposito ${ }^{1,4}$, Tommaso Cesari ${ }^{2}$, Nicolò Cesa-Bianchi ${ }^{1,3}$
${ }^{1}$ Università degli Studi di Milano, ${ }^{2}$ University of Ottawa
${ }^{3}$ Politecnico di Milano, ${ }^{4}$ Istituto Italiano di Tecnologia

uOttawa

Contents

1. Problem Setting
2. State of the Art
3. $q-$ FTRL
4. Extensions
5. Lower Bounds

Problem Setting

Problem setting: basic ingredients

- The learner faces an action set $V=[K]$

Problem setting: basic ingredients

- The learner faces an action set $V=[K]$
- A graph $G=(V, E)$ over the actions is provided

Problem setting: basic ingredients

- The learner faces an action set $V=[K]$
- A graph $G=(V, E)$ over the actions is provided
- The player interacts with the environment in a series of T rounds

Problem setting: basic ingredients

- The learner faces an action set $V=[K]$
- A graph $G=(V, E)$ over the actions is provided
- The player interacts with the environment in a series of T rounds
- At the start, the environment (secretly) picks a sequence of losses $\left(\ell_{t}\right)_{t \in[T]}$, where $\ell_{t}: V \rightarrow[0,1]$

Problem setting: interaction protocol and objective

For $t=1 \ldots T$:

Problem setting: interaction protocol and objective

For $t=1 \ldots T$:

- the learner picks (possibly at random) an action $I_{t} \in V$

Problem setting: interaction protocol and objective

For $t=1 \ldots T$:

- the learner picks (possibly at random) an action $I_{t} \in V$
- the learner suffers and observes $\ell_{t}\left(I_{t}\right)$

Problem setting: interaction protocol and objective

For $t=1 \ldots T$:

- the learner picks (possibly at random) an action $I_{t} \in V$
- the learner suffers and observes $\ell_{t}\left(I_{t}\right)$
- the learner observes the losses of the actions in
 $N_{G}\left(I_{t}\right)$ (the neighbourhood of I_{t} in G)

Problem setting: interaction protocol and objective

For $t=1 \ldots T$:

- the learner picks (possibly at random) an action $I_{t} \in V$
- the learner suffers and observes $\ell_{t}\left(I_{t}\right)$
- the learner observes the losses of the actions in
 $N_{G}\left(I_{t}\right)$ (the neighbourhood of I_{t} in G)

The objective is to minimize the regret:

$$
R_{T}=\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(I_{t}\right)\right]-\min _{i \in[K]} \sum_{t=1}^{T} \ell_{t}(i)
$$

State of the Art

State of the art

- The minimax regret is the lowest achievable regret of any strategy against its worst case environment
- For a given graph, the best known ${ }^{1}$ upper bound is of order $\sqrt{\alpha T \ln K}$

The independence number $\alpha(G)$ is the cardinality of the largest set of nodes no two of which are neighbours

- The best known ${ }^{1}$ lower bound is of order $\sqrt{\alpha T}$

[^0]
State of the art

- The minimax regret is the lowest achievable regret of any strategy against its worst case environment
- For a given graph, the best known ${ }^{1}$ upper bound is of order $\sqrt{\alpha T \ln K}$

The independence number $\alpha(G)$ is the cardinality of the largest set of nodes no two of which are neighbours

- The best known ${ }^{1}$ lower bound is of order $\sqrt{\alpha T}$

[^1]
State of the art: special cases

However, we know that

- for bandits $(\alpha=K)$: the minimax regret is ${ }^{2} \Theta(\sqrt{K T})$
- for experts $(\alpha=1)$: the minimax regret is ${ }^{3} \Theta(\sqrt{T \ln K})$

[^2]
State of the art: special cases

However, we know that

- for bandits $(\alpha=K)$: the minimax regret is ${ }^{2} \Theta(\sqrt{K T})$
- for experts $(\alpha=1)$: the minimax regret is ${ }^{3} \Theta(\sqrt{T \ln K})$

What about intermediate cases?

[^3]
q-FTRL

The FTRL rule

At every round $t=1, \ldots, T$:

- $\forall i \in[K]$, let $\hat{L}_{t-1}(i)=\sum_{s=1}^{t-1} \hat{\ell}_{s}(i)$, where $\hat{\ell}_{s}(i)$ is an estimate of the loss of action i in round s
- Select a distribution over the actions that balances exploitation and exploration/stability:

$$
p_{t}=\underset{p \in \Delta_{K}}{\arg \min } \sum_{i=1}^{K} p(i) \hat{L}_{t-1}(i)+\frac{1}{\eta} \psi(p)
$$

where $\psi: \Delta_{K} \rightarrow \mathbb{R}$ is a regularizer

- Draw $I_{t} \sim p_{t}$

The FTRL rule

At every round $t=1, \ldots, T$:

- $\forall i \in[K]$, let $\hat{L}_{t-1}(i)=\sum_{s=1}^{t-1} \hat{\ell}_{s}(i)$, where $\hat{\ell}_{s}(i)$ is an estimate of the loss of action i in round s
- Select a distribution over the actions that balances exploitation and exploration/stability:

$$
p_{t}=\underset{p \in \Delta_{K}}{\arg \min } \sum_{i=1}^{K} p(i) \hat{L}_{t-1}(i)+\frac{1}{\eta} \psi(p)
$$

where $\psi: \Delta_{K} \rightarrow \mathbb{R}$ is a regularizer

- Draw $I_{t} \sim p_{t}$

The importance-weighted estimator

For $i \in[K]$ and $t \in[T]$,

$$
\hat{\ell}_{t}(i)=\frac{\ell_{t}(i)}{P_{t}(i)} \mathbb{I}\left\{I_{t} \in\{i\} \cup N_{G}(i)\right\}
$$

where $P_{t}(i)=\mathbb{P}\left(I_{t} \in\{i\} \cup N_{G}(i) \mid I_{1}, \ldots, I_{t-1}\right)=p_{t}(i)+\sum_{j \in N_{G}(i)} p_{t}(j)$

The (negative) q-Tsallis entropy regularizer

For $q \in(0,1)$, define

$$
\psi_{q}(p)=\frac{1}{1-q}\left(1-\sum_{i=1}^{K} p(i)^{q}\right)
$$

The (negative) q-Tsallis entropy regularizer

For $q \in(0,1)$, define

$$
\psi_{q}(p)=\frac{1}{1-q}\left(1-\sum_{i=1}^{K} p(i)^{q}\right)
$$

- with $q=1 / 2$, one can achieve $\sqrt{K T}$ regret for bandits
- in the limit as $q \rightarrow 1$, we recover the (negative) Shannon entropy, using which we can achieve $\sqrt{\alpha T \ln K}$ regret

The (negative) q-Tsallis entropy regularizer

For $q \in(0,1)$, define

$$
\psi_{q}(p)=\frac{1}{1-q}\left(1-\sum_{i=1}^{K} p(i)^{q}\right)
$$

- with $q=1 / 2$, one can achieve $\sqrt{K T}$ regret for bandits
- in the limit as $q \rightarrow 1$, we recover the (negative) Shannon entropy, using which we can achieve $\sqrt{\alpha T \ln K}$ regret
- what if we choose q as a function of α ?

$q-F T R L:$ key lemma

FTRL with regularizer $\psi_{q}(q-$ FTRL $)$ and the IW estimator satisfies

$$
R_{T} \leq \frac{K^{1-q}}{\eta(1-q)}+\frac{\eta}{2 q} \mathbb{E} \sum_{t=1}^{T} \sum_{i=1}^{K} \frac{p_{t}(i)^{2-q}}{\sum_{j \in\{i\} \cup N_{G}(i)} p_{t}(j)}
$$

q-FTRL: key lemma

FTRL with regularizer $\psi_{q}(q-$ FTRL $)$ and the IW estimator satisfies

$$
R_{T} \leq \frac{K^{1-q}}{\eta(1-q)}+\frac{\eta}{2 q} \mathbb{E} \sum_{t=1}^{T} \sum_{i=1}^{K} \frac{p_{t}(i)^{2-q}}{\sum_{j \in\{i\} \cup N_{G}(i)} p_{t}(j)}
$$

Lemma

Let G be an undirected graph over K nodes. Then, for any $p \in \Delta_{K-1}$ and $q \in[0,1]$

$$
\sum_{i=1}^{K} \frac{p_{t}(i)^{2-q}}{\sum_{j \in\{i\} \cup N_{G}(i)} p_{t}(j)} \leq \alpha(G)^{q}
$$

Thus,

$$
R_{T} \leq \frac{K^{1-q}}{\eta(1-q)}+\frac{\eta}{2 q} \alpha^{q} T
$$

q-FTRL: final bound

Theorem

q-FTRL with

$$
q=\frac{1}{2}\left(1+\frac{\ln (K / \alpha)}{\sqrt{\ln (K / \alpha)^{2}+4}+2}\right) \in[1 / 2,1) \text { and } \eta=\sqrt{\frac{2 q K^{1-q}}{T(1-q) \alpha^{q}}}
$$

satisifes

$$
R_{T} \leq 2 \sqrt{e \alpha T(2+\ln (K / \alpha))}
$$

Extensions

The uninformed setting

Consider a variant where

[^4]
The uninformed setting

Consider a variant where

- instead of a fixed graph, the environment selects a sequence of graphs $\left(G_{t}\right)_{t \in[T]}$, where $G_{t}=\left(V, E_{t}\right)$

[^5]
The uninformed setting

Consider a variant where

- instead of a fixed graph, the environment selects a sequence of graphs $\left(G_{t}\right)_{t \in[T]}$, where $G_{t}=\left(V, E_{t}\right)$
- the learner observes G_{t} only after selecting I_{t}

[^6]
The uninformed setting

Consider a variant where

- instead of a fixed graph, the environment selects a sequence of graphs $\left(G_{t}\right)_{t \in[T]}$, where $G_{t}=\left(V, E_{t}\right)$
- the learner observes G_{t} only after selecting I_{t}

State of the art methods ${ }^{4}$ can achieve an upper bound of order
$\sqrt{\sum_{t=1}^{T} \alpha_{t} \ln K}$, where $\alpha_{t}=\alpha\left(G_{t}\right)$

[^7]
The uninformed setting

Consider a variant where

- instead of a fixed graph, the environment selects a sequence of graphs $\left(G_{t}\right)_{t \in[T]}$, where $G_{t}=\left(V, E_{t}\right)$
- the learner observes G_{t} only after selecting I_{t}

State of the art methods ${ }^{4}$ can achieve an upper bound of order
$\sqrt{\sum_{t=1}^{T} \alpha_{t} \ln K}$, where $\alpha_{t}=\alpha\left(G_{t}\right)$
With $\bar{\alpha}_{T}=\frac{1}{T} \sum_{t=1}^{T} \alpha_{t}$, utilizing a doubling trick, we can achieve

$$
R_{T} \leq c \sqrt{\sum_{t=1}^{T} \alpha_{t}\left(2+\ln \left(\frac{K}{\bar{\alpha}_{T}}\right)\right)}+\log _{2} \bar{\alpha}_{T}
$$

[^8]
General strongly observable graphs

- The learner only observes $\ell_{t}(i)$ for $i \in N_{G_{t}}\left(I_{t}\right)$
- For every $i \in V$, at least one of the following holds: $i \in N_{G_{t}}(i)$ or $i \in N_{G_{t}}(j)$ for all $j \neq i$
- Let $J_{t}=\left\{i \in V: i \notin N_{G_{t}}(i)\right.$ and $\left.p_{t}(i)>1 / 2\right\}$, we can recover the same guarantees using the following loss estimator adapted from (Zimmert and Seldin, 2021)

$$
\hat{\ell}_{t}(i)= \begin{cases}\frac{\ell_{t}(i)}{P_{t}(i)} \mathbb{I}\left\{I_{t} \in N_{G_{t}}(i)\right\} & \text { if } i \in V \backslash J_{t} \\ \frac{\ell_{t}(i)-1}{P_{t}(i)} \mathbb{I}\left\{I_{t} \in N_{G_{t}}(i)\right\}+1 & \text { if } i \in J_{t}\end{cases}
$$

Lower Bounds

Lower Bounds

Theorem

Pick any α and K such that $2 \leq \alpha \leq K$. Then, for any algorithm and sufficiently large T, there exists a sequence of losses and feedback graphs G_{1}, \ldots, G_{T} such that $\alpha\left(G_{t}\right)=\alpha$ for all $t=1, \ldots, T$ and

$$
R_{T} \geq c \sqrt{\alpha T \log _{\alpha} K}
$$

Lower Bounds

Theorem

Pick any α and K such that $2 \leq \alpha \leq K$. Then, for any algorithm and sufficiently large T, there exists a sequence of losses and feedback graphs G_{1}, \ldots, G_{T} such that $\alpha\left(G_{t}\right)=\alpha$ for all $t=1, \ldots, T$ and

$$
R_{T} \geq c \sqrt{\alpha T \log _{\alpha} K}
$$

Improves upon the $\Omega(\sqrt{\alpha T})$ lower bound, however

- not exactly matching
- requires time-varying graphs
- not instance-specific

Lower Bounds

Theorem

Pick any α and K such that $2 \leq \alpha \leq K$. Then, for any algorithm and sufficiently large T, there exists a sequence of losses and feedback graphs G_{1}, \ldots, G_{T} such that $\alpha\left(G_{t}\right)=\alpha$ for all $t=1, \ldots, T$ and

$$
R_{T} \geq c \sqrt{\alpha T \log _{\alpha} K}
$$

Improves upon the $\Omega(\sqrt{\alpha T})$ lower bound, however

- not exactly matching
- requires time-varying graphs
- not instance-specific

A more recent work (Chen, He, and Zhang, 2023) shows that for every $\alpha \leq K$ their exists a (fixed) graph G with $\alpha(G)=\alpha$ such that $R_{T} \geq c \sqrt{\alpha T \ln (K / \alpha)}$

References

Cesa－Bianchi，Nicolò et al．（1993）．＂How to use expert advice＂．In： Proceedings of the 25 th annual ACM symposium on Theory of Computing，pp．382－391．
國 Auer，Peter et al．（1995）．＂Gambling in a rigged casino：The adversarial multi－armed bandit problem＂．In：Proceedings of IEEE 36th annual foundations of computer science．IEEE，pp．322－331．
围 Audibert，Jean－Yves and Sébastien Bubeck（2009）．＂Minimax Policies for Adversarial and Stochastic Bandits．＂In：COLT．Vol．7， pp．1－122．
目 Mannor，Shie and Ohad Shamir（2011）．＂From bandits to experts： On the value of side－observations＂．In：Advances in Neural Information Processing Systems 24.

References ii

囯 Alon，Noga et al．（2017）．＂Nonstochastic Multi－Armed Bandits with Graph－Structured Feedback＂．In：SIAM Journal on Computing 46．6， pp．1785－1826．
目 Zimmert，Julian and Yevgeny Seldin（2021）．＂Tsallis－inf：An optimal algorithm for stochastic and adversarial bandits＂．In：The Journal of Machine Learning Research 22．1，pp．1310－1358．
围 Chen，Houshuang，Yuchen He，and Chihao Zhang（2023）．On Interpolating Experts and Multi－Armed Bandits．arXiv： 2307.07264 ［cs．LG］．

[^0]: ${ }^{1}$ Alon et al., 2017.

[^1]: ${ }^{1}$ Alon et al., 2017.

[^2]: ${ }^{2}$ Auer et al., 1995; Audibert and Bubeck, 2009.
 ${ }^{3}$ Cesa-Bianchi et al., 1993.

[^3]: ${ }^{2}$ Auer et al., 1995; Audibert and Bubeck, 2009.
 ${ }^{3}$ Cesa-Bianchi et al., 1993.

[^4]: ${ }^{4}$ Alon et al., 2017.

[^5]: ${ }^{4}$ Alon et al., 2017.

[^6]: ${ }^{4}$ Alon et al., 2017.

[^7]: ${ }^{4}$ Alon et al., 2017.

[^8]: ${ }^{4}$ Alon et al., 2017.

