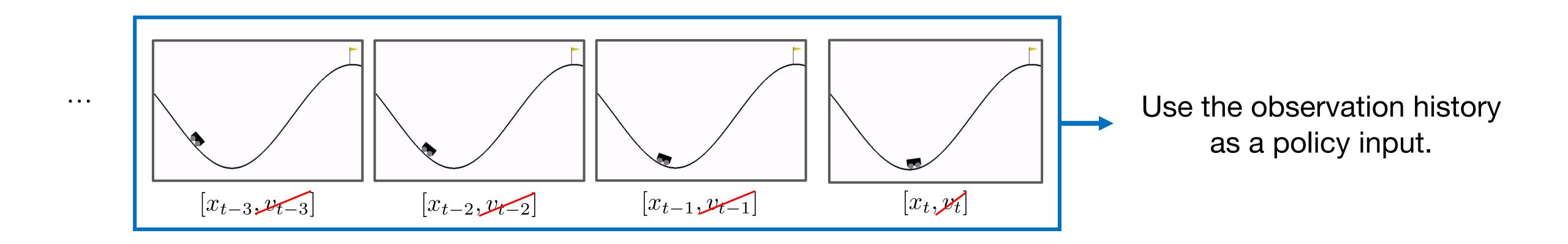


Regularized Behavior Cloning for Blocking the Leakage of Past Action Information

NeurIPS 2023 | Spotlight

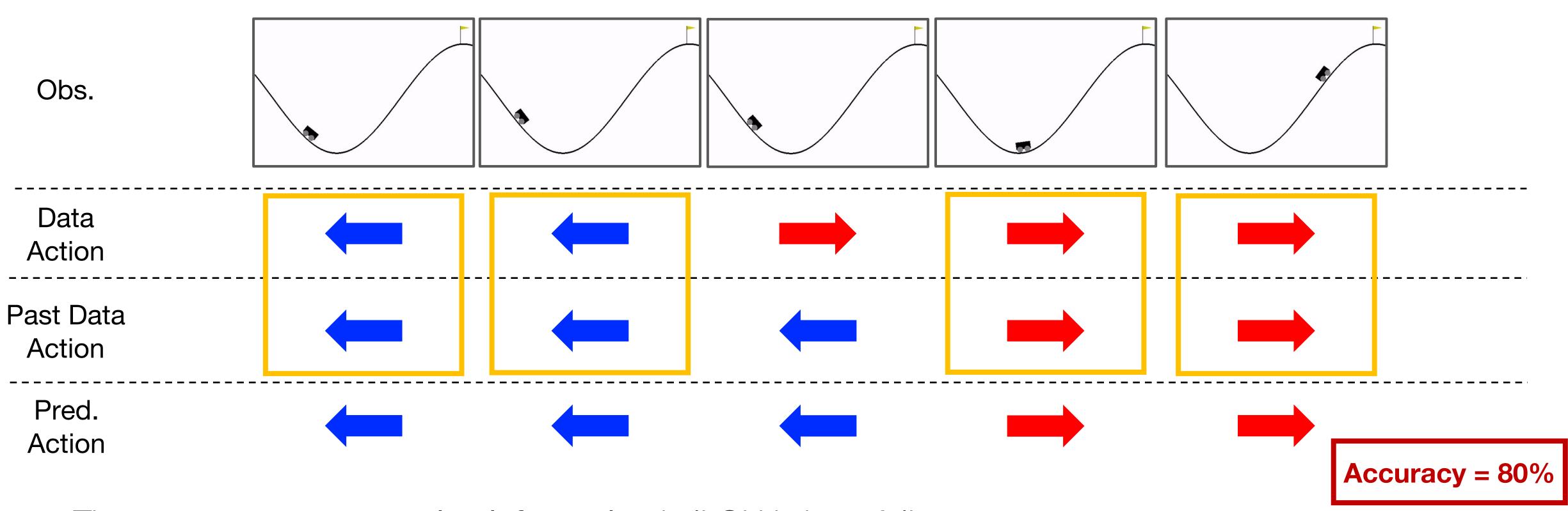
Seokin Seo, HyeongJoo Hwang, Hongseok Yang, and Kee-Eung Kim

Imitation Learning with Observation Histories (ILOH)



- Individual observation does not contain sufficient control-relevant information (e.g. velocity, ...).
- ILOH use observation histories as policy inputs to imitate the expert actions.

Past Action Information in ILOH



The unnecessary past action information in ILOH is harmful!

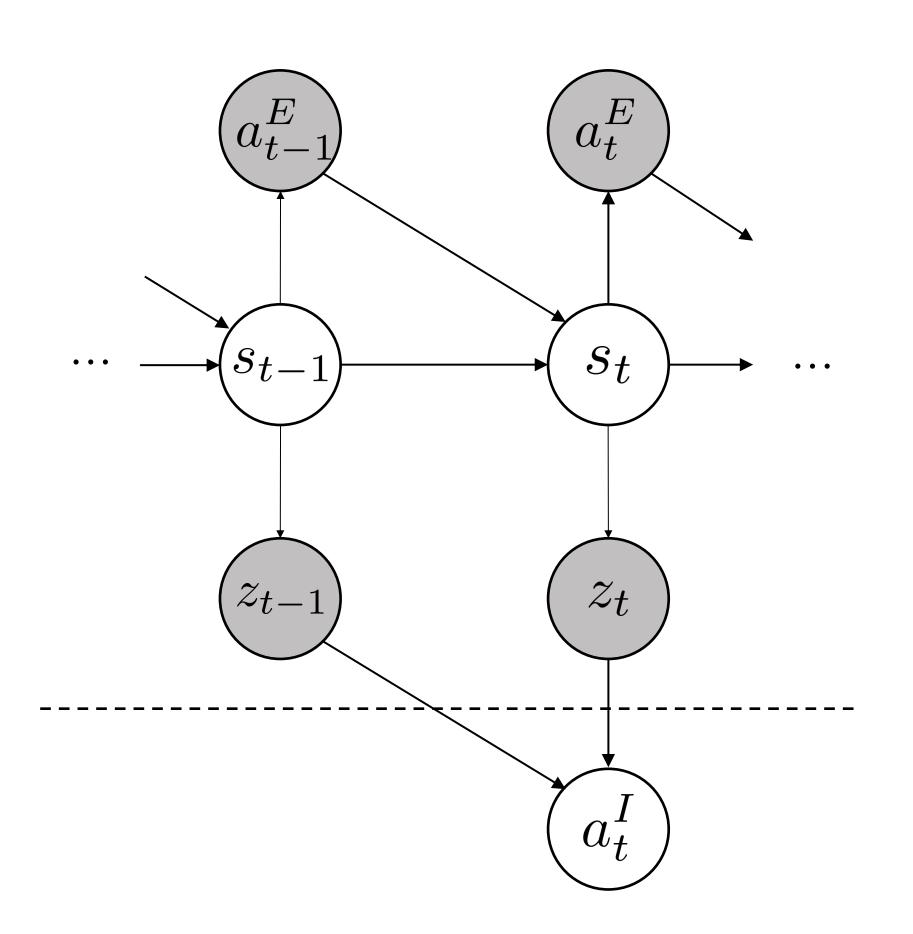
May repeat only past actions: known as copycat problem [1], inertia problem [2], latching effect [3], ...

^[1] Wen et al., "Fighting Copycat Agents from Observation Histories", NeurIPS 2020.

^[2] Codevilla et al., "Exploring the Limitations of Behavior Cloning for Autonomous Driving", ICCV 2019.

^[3] Swamy et al., "Sequence Model Imitation Learning with Unobserved Contexts", NeurIPS 2022.

Past Action Information Leakage



Q. What is the leaked past action information?

Information leaked from observation history that hinders to accomplish:

$$a_t^I \perp \!\!\! \perp a_{t-1}^E | a_t^E$$

Hence, amount of leaked past action information can be measured by a conditional dependence metric.

We use the kernel-based metric HSCIC (Hilbert-Schmidt Conditional Independence Criterion) [4].

$$\operatorname{HSCIC}(X, Y|z) := \operatorname{MMD}^{2}(P_{XY|z}, P_{X|z}P_{Y|z})$$
$$= \|\mu_{P_{XY|z}} - \mu_{P_{X|z}} \otimes \mu_{P_{Y|z}}\|_{\mathcal{H}_{X} \otimes \mathcal{H}_{Y}}^{2}$$

Can we apply the metric to training?

Regularized BC Framework

• We regularize φ_t , the representation of the observation history:

$$\mathcal{L}(\pi) := \mathcal{L}_{\mathrm{bc}}(\pi; a_t^E) + \alpha \cdot \mathcal{L}_{\mathrm{reg}}(\varphi_t; a_{t-1}^E, a_t^E)$$
 standard BC loss regularize to satisfy $\varphi_t \perp\!\!\!\perp a_{t-1}^E | a_t^E$

Q. How to regularize?

$$\mathrm{HSCIC}(\varphi_t; a_{t-1}^E | a_t^E)$$

Advantages

HSCIC can be estimated in a *closed-form* solution.

(1) No nested optimization

(2) No additional neural network

HSCIC is based on non-parametric statistics.

(3) No assumption on distribution

Performance Comparison on D4RL Dataset

- We use expert demonstrations provided by D4RL benchmark [5] for all experiments.
- 4 continuous control task (MuJoCo) + 1 pixel-based autonomous driving task (CARLA)

Task	W	BC	KF	PrimeNet	RAP	FCA	MINE	PALR (Ours)
hopper	2	32.5 ± 2.9	32.0 ± 1.9	30.0 ± 1.6	20.2 ± 1.4	31.9 ± 2.5	25.0 ± 1.9	42.0 ± 2.4
	4	47.7 ± 3.4	45.7 ± 1.0	45.3 ± 2.8	32.6 ± 2.6	36.9 ± 2.4	37.6 ± 3.1	58.4 ± 2.8
walker2d	2	53.0 ± 2.7	50.0 ± 2.3	48.5 ± 3.3	15.8 ± 2.0	63.1 ± 2.7	58.6 ± 5.5	$\textbf{79.8} \pm \textbf{2.3}$
	4	63.2 ± 6.3	77.4 ± 2.0	79.2 ± 3.3	25.4 ± 2.1	$\textbf{81.9} \pm \textbf{3.3}$	68.7 ± 6.7	83.4 ± 5.4
halfcheetah	2	74.1 ± 2.3	64.3 ± 1.4	61.5 ± 1.9	63.9 ± 2.1	78.2 ± 2.8	76.3 ± 1.9	$\textbf{86.4} \pm \textbf{1.1}$
	4	68.4 ± 2.6	55.7 ± 4.1	45.5 ± 1.7	59.0 ± 2.7	69.9 ± 2.6	73.4 ± 2.4	79.1 ± 4.3
ant	2	56.3 ± 3.5	54.9 ± 1.7	51.7 ± 2.4	44.1 ± 1.2	51.1 ± 2.2	53.9 ± 1.9	59.6 ± 3.0
	4	64.4 ± 1.8	48.6 ± 3.8	58.2 ± 1.9	48.6 ± 2.6	57.7 ± 1.3	56.6 ± 1.8	64.6 ± 2.5
carla-lane	3	52.5 ± 6.2	66.6 ± 2.1	58.2 ± 2.2	25.3 ± 5.4	57.1 ± 3.1	60.1 ± 4.1	72.9 ± 2.6

^{*} Video sources: https://www.youtube.com/watch?v=om8klsBj4rc

Summary

- 1. Past Action Information Leakage : $a_t^I \not\perp \!\!\! \perp a_{t-1}^E | a_t^E |$
- 2. Past Action Leakage Regularization (PALR):

a simple HSCIC-regularized BC can effectively prevent the leakage and can improve imitation learning performance.

Poster

Great Hall & Hall B1+B2 #1419

Wed 13 Dec 5 PM - 7 PM

Code & Paper

