

Model Shapley: Equitable Model Valuation with Black-box Access

Xinyi Xu¹², Thanh Lam¹, Chuan Sheng Foo², Bryan Kian Hsiang Low¹

¹Department of Computer Science, National University of Singapore (NUS), Singapore ²Institute of Infocomm Research, A*STAR, Singapore

(Why not) Data Valuation **Practical challenges**

- **Operational difficulties:**
 - massively distributed storage (e.g., over 1 million nodes),
 - enormous data size (e.g., over 45 TB of training data GPT-3),
 - **transient** nature (i.e., not persistently stored).

What then?

• Data privacy regulations (e.g., GRPR, CPA) prohibit direct access to data. Existing data valuations usually require an access to data.

Model Valuation as a post-training valuation alternative

- The entire model is usually **stored in one piece** (i.e., not distributed storage). • Smaller compared to the training data (e.g., size of GPT-3 < 1% of its training data).
- Not transient (i.e., **persistently** stored).

- Models trained with **DP-ML methods can be available** for valuation.
- Existing AI marketplaces selling trained models require suitable pricing mechanisms, e.g., AWS Marketplace, Modzy.

Model Valuation as a post-training valuation alternative

- The entire model is usually **stored in one piece** (i.e., not distributed storage).
- Smaller compared to the training data (e.g., size of GPT-3 < 1% of its training data).
- Not transient (i.e., **persistently** stored).

• Models trained with **DP-ML methods can be available** for valuation.

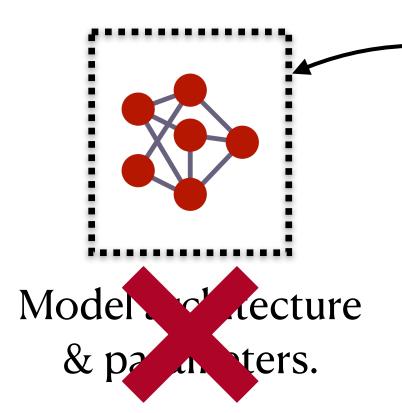
Data vs. Model Valuation

	Data valuation	Model valuation
Storage	Massively distributed	Stored in one piece
Size	Enormous	More manageable
Persistent storage	May not be	Yes
Privacy regulations	Cannot bypass	Less difficult

Model valuation is a more appealing choice

Model Valuation Challenges

• Under the black-box access, what is a formal representation of the model?



Black-box

- What is a suitable valuation criterion?
- How to ensure equitability (i.e., "fairness")?

If two *different* models always make identical predictions. Are they equally valuable?

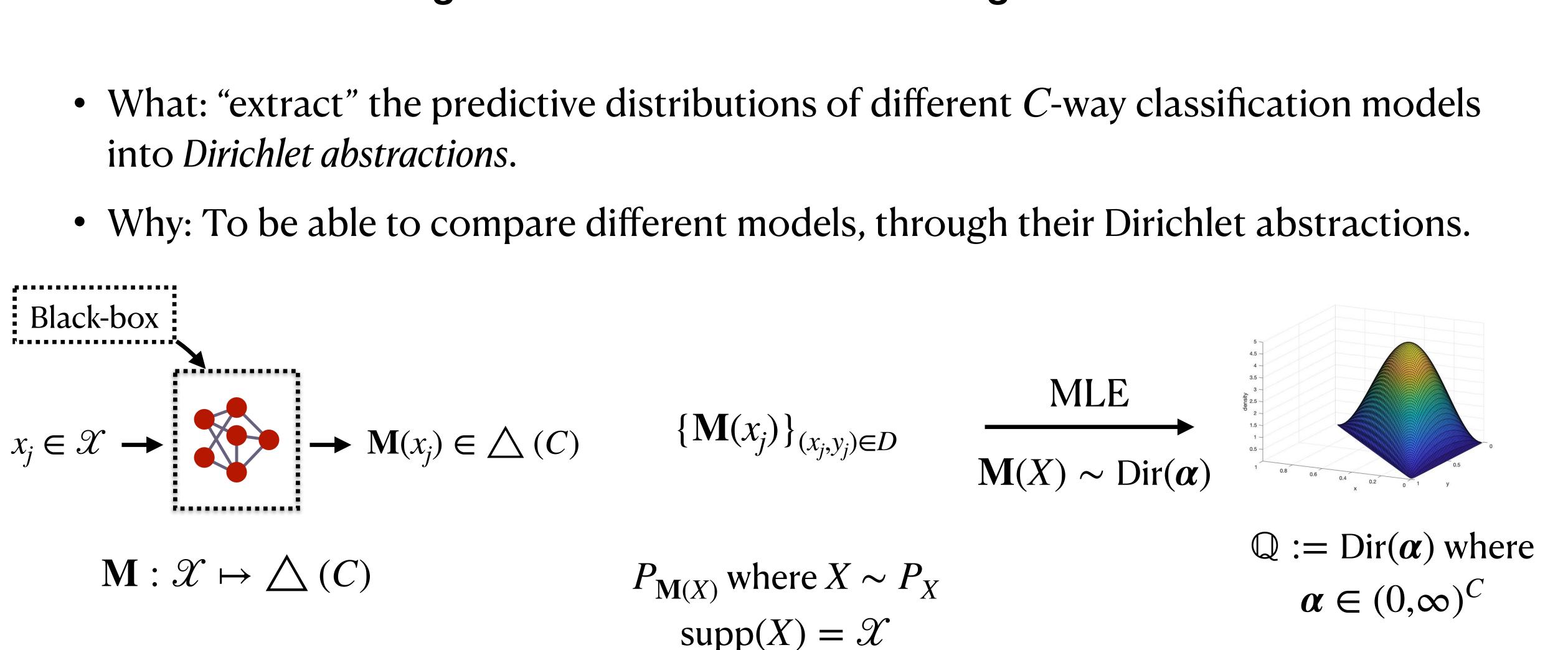
No access to architecture, or parameters.

Accuracy, predictive certainty, F1-score?

Dirichlet Abstraction

A homogeneous formalization of heterogeneous models

- into Dirichlet abstractions.



Model Shapley Valuing a model via its (negated) distance to oracle

Hellinger distance:
$$d_{\mathrm{H}}(P, Q) := \left[1 - \int \sqrt{p(x)q(x)} \mathrm{d}x\right]^{1/2}$$

Value of **M** whose Dirichlet abstraction is \mathbb{Q} :

where \mathbb{Q}^* is the Dirichlet abstraction of an oracle (i.e., optimal classifier).

Interpretation:

Since the oracle \mathbb{Q}^* is the best (most valuable), by definition,

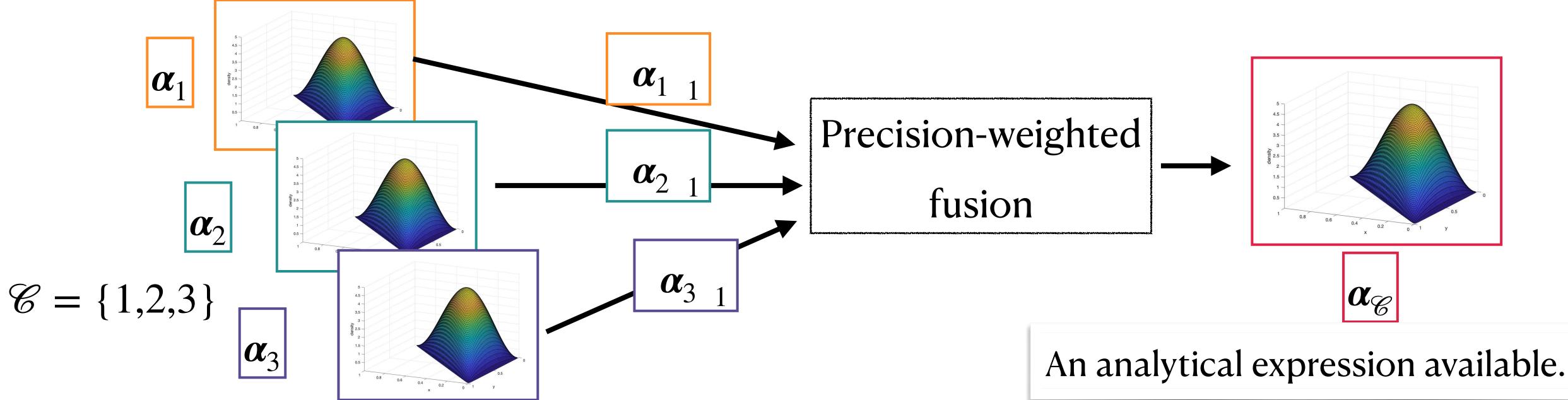
Closed-form expression available.

- $-d_{\mathsf{H}}(\mathbb{Q}^*,\mathbb{Q})$

- The value of M is defined to be the statistical similarity between its Dirichlet abstraction \mathbb{Q} and \mathbb{Q}^* .

Model Shapley **Coalition: fusion of Dirichlet abstractions**

the Dirichlet abstractions).



Precision-weighted fusion (informal): For a coalition $\mathscr{C} \subseteq [N] = \{1, ..., N\}$ of models, define an fused Dirichlet abstraction $\mathbb{Q}_{\mathscr{C}} := Dir(\alpha_{\mathscr{C}})$, based on their respective precision (of

Model Shapley **Equitability from the Shapley value**

Model Shapley value:

Equitability

- Null player
- Symmetry
- Linearity

 $\phi_i := \sum_{i=1}^{n} \omega_{\mathscr{C}}[\nu(\mathscr{C} \cup \{i\}) - \nu(\mathscr{C})]$ $\mathscr{C}\subseteq [N]\setminus\{i\}$

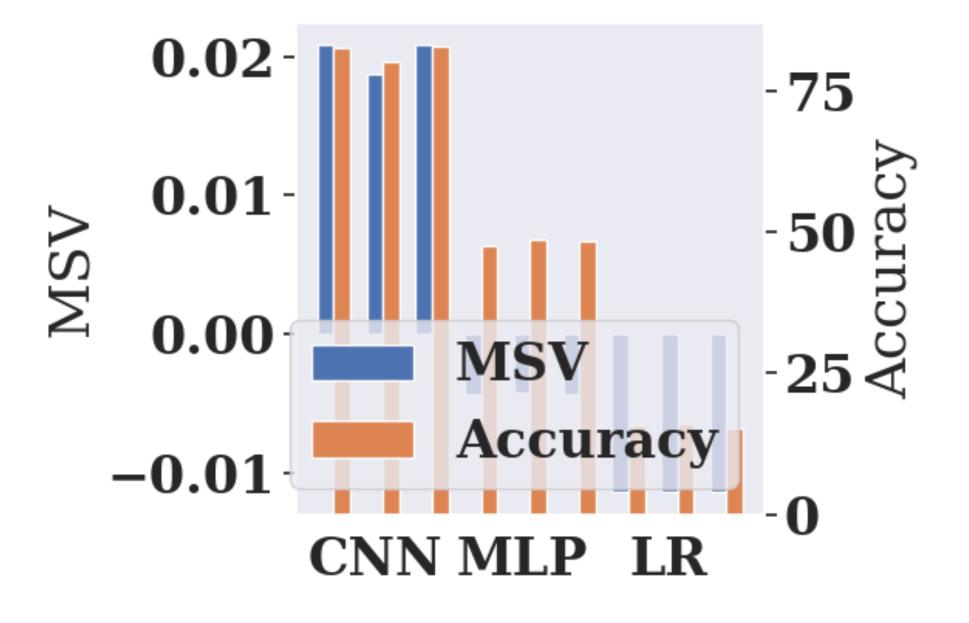
where $\nu(\mathscr{C}) := -d_{H}(\mathbb{Q}^{*}, \mathbb{Q}_{\mathscr{C}})$ and $\omega_{\mathscr{C}} := \mathscr{C} ! \times (N - \mathscr{C} ! - 1)!/N!$.

Analytic properties

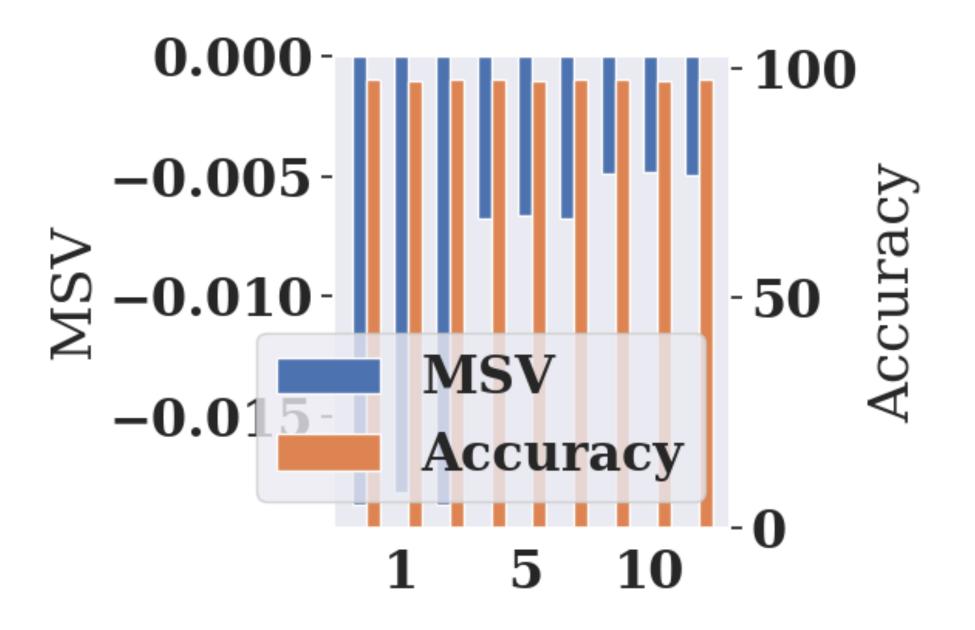
For computational tractability.

- ν is evaluated in closed-form
- $\mathbb{Q}_{\mathscr{C}}$ has analytic expression

Experiments MSVs vs. common criteria

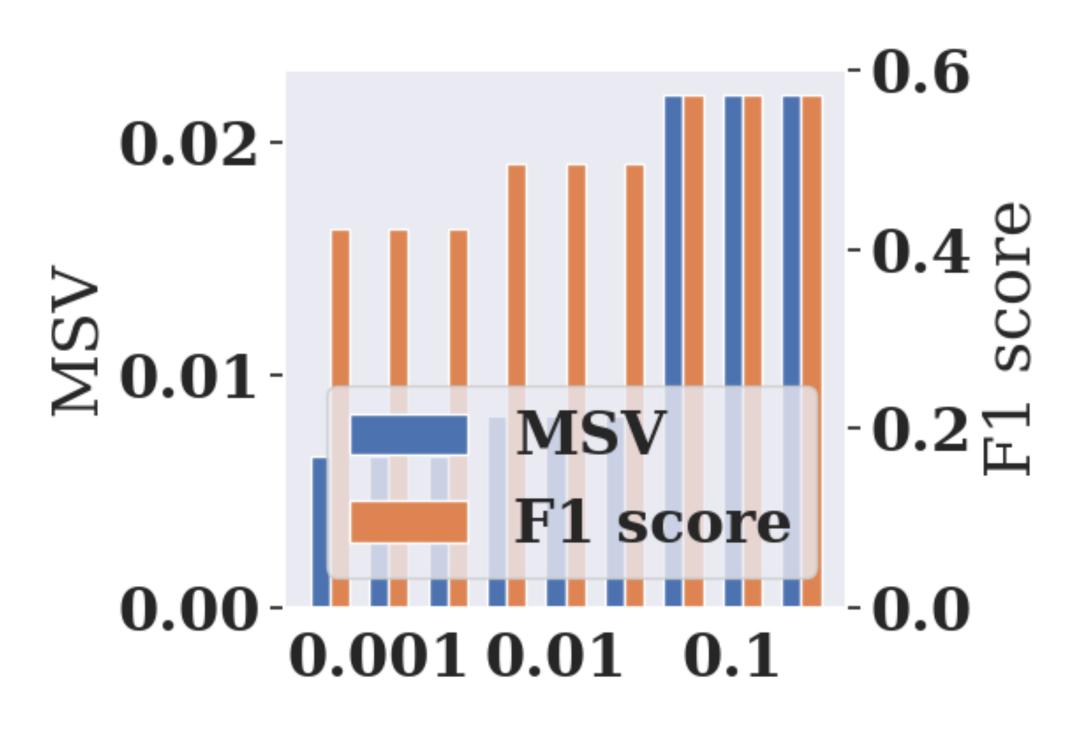


MSV vs. accuracy



MSVs vs. certainty (fixed accuracy)

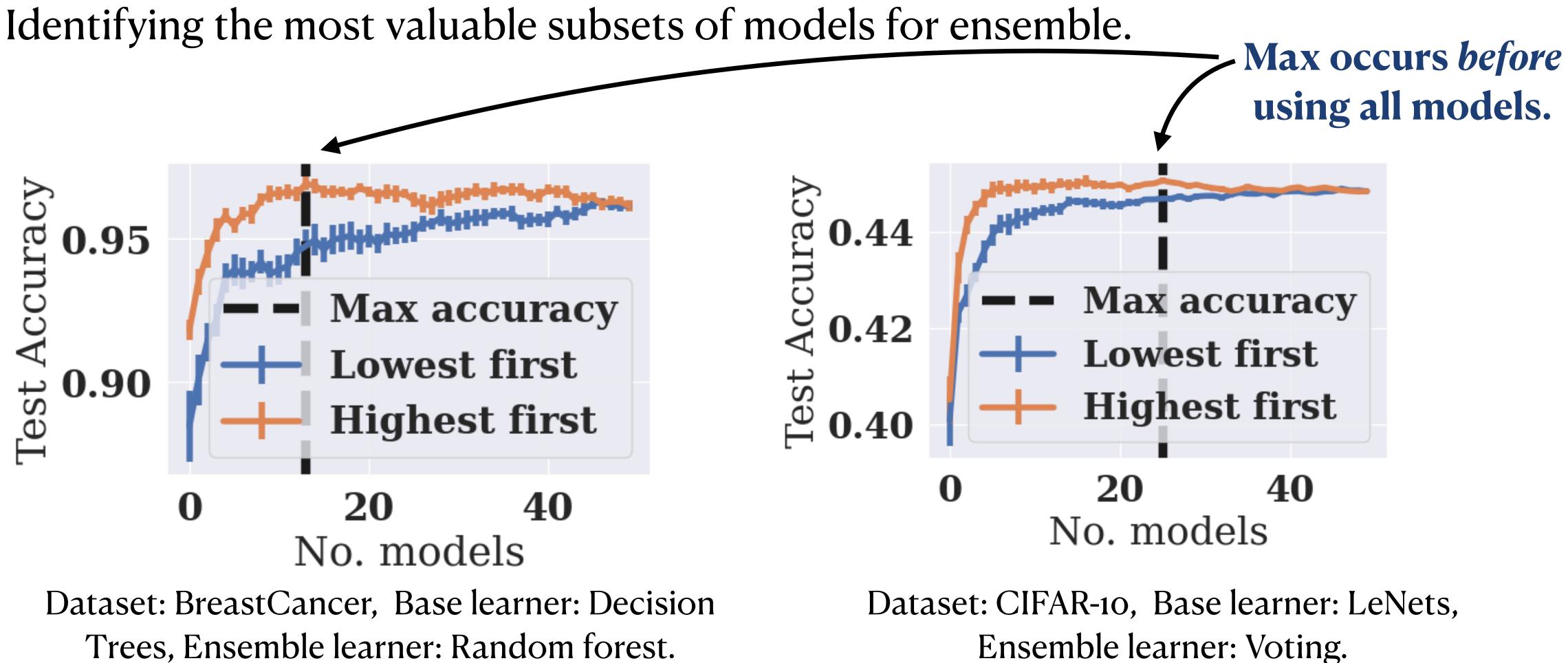
Experiments **MSVs vs. common criteria**



MSV vs. F1 score

For highly imbalanced data.

Experiments **MSV for pruning in ensemble**



Summary and conclusion

Model Valuation is a feasible alternative to Data Valuation.

- Propose *Dirichlet abstractions* to compare different models;
- Define the *model Shapley* as an equitable valuation;
- Experiments show MSVs behave consistently with common evaluation criteria.

• Future works can consider extension to generative models.

See you at poster session

Great Hall & Hall B1+B2 #1710 Wed 13 Dec 6 p.m. EST – 8 p.m. EST

QR: Link to our NeurIPS poster page.

References

- Proc. NeurIPS, 2021.
- shot learners. In Proc. NeurIPS, 2020.
- 2007.
- sharing. New England Journal of Medicine, 375(12):1182–1183, 2016.
- Systems Frontiers, 23(4):883–896, 2021.
- valuation based on the shapley value. In *Proc. AISTATS*, pages 1167–1176, 2019.
- G. A. Kaissis, M. R. Makowski, D. Ru⁻ckert, and R. F. Braren. Secure, privacy-preserving and federated machine learning in medical imaging. *Nature Machine Intelligence*, 2:305–311, 2020.
- T. Minka. Estimating a dirichlet distribution, 2000.

• K.Singhal, H.Sidahmed, Z.Garrett, S.Wu, J.K.Rush, and S.Prakash. Federated reconstruction: Partially local federated learning. In

• T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-

• A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: Scalable online collaborative filtering. In Proc. WWW,

• J. M. Drazen, S. Morrissey, D. Malina, M. B. Hamel, and E. W. Campion. The importance — and the complexities — of data

• M.F.HaqueandR.Krishnan.Towardautomatedcyberdefensewithsecuresharingofstructured cyber threat intelligence. *Information*

• R. Jia, D. Dao, B. Wang, F. A. Hubis, N. Hynes, N. M. Gu[¨]rel, B. Li, C. Zhang, D. Song, and C. J. Spanos. Towards efficient data

