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How to efficiently explore?

?⇒

▶ Learning complex behaviors efficiently is hard... it ultimately comes down to how you

explore the environment.

▶ What is an efficient way to explore an unknown environment?
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Model

We consider an MDP ϕ = (S,A, P, q),

▶ S,A are, respectively, the state and action

spaces.

▶ P : S ×A 7→ ∆(S) is the transition function.

▶ q : S ×A 7→ ∆([0, 1]) is the reward

distribution.

▶ Discounted value of a Markov policy π: V π(s) = Eπ[
∑

t≥0 γ
trt|s0 = s] with

st+1 ∼ P (·|st, at), rt ∼ q(·|st, at) and at ∼ π(·|st). V ⋆(s) = maxπ V
π(s) is the optimal

value.

▶ Action-value function of π: Qπ(s, a) = r(s, a) + γEs′ [V
π(s′)] (sim. Q⋆).
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Sample complexity lower bound

Sample complexity of learning an optimal policy [Marjani and Proutiere, 2021]:

lim inf
δ→0

Eϕ[τ ]︸ ︷︷ ︸
Sample Complexity

/ log(1/δ) ≥ T ⋆(ωopt)︸ ︷︷ ︸
Characteristic time

,

where ωopt = arg supω T (ω)−1 is the optimal exploration strategy.

U⋆(ϕ)

T ⋆(ϕ)

Non-convex region

Instances ϕ
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▶ For a specific MDP ϕ computing

the lower bound T ⋆ is a

non-convex problem.

▶ An alternative way is to find an

upper bound U⋆ = maxω U⋆(ω)

by convexifying the original

problem.
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An approximate upper bound

An approximation of this upper bound U is given by

U(ω) ≈ max
s,a̸=π⋆(s)

H(s, a)

ω(s, a)
+

H⋆

mins′ ω(s′, π⋆(s′))
,

where H(s, a) := 2+8φ2Varsa[V
⋆]

∆(s,a)2 and H⋆ ∝ maxs′ Vars′,π⋆(s′)[V
⋆](1+γ)2

∆min
2(1−γ)2 .

▶ ∆(s, a) = V ⋆(s)−Q⋆(s, a) is the sub-optimality gap (with ∆min = mins,a̸=π⋆(s) ∆(s, a)).
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▶ Varsa[V
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⋆(s̄)]
)2ó

is the variance of the optimal

value.
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Corollary

In the generative model the optimal allocation ω⋆ satisfies

ω⋆(s, a) ∝

H(s, a) a ̸= π⋆(s),»
H⋆

∑
s,a̸=π⋆(s) H(s, a)/|S| otherwise.
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Algorithm idea

The idea is to explore according to ω⋆, but we do not know H(s, a) and H⋆!

1. Learn the Q-values and the variance of the optimal policy in a model-free way

▶ Compute ∆t(s, a) = V ⋆
t (s)−Q⋆

t (s, a) and Varsa,t[V
⋆
t ], where V ⋆

t (s) = maxa Q
⋆
t (s, a).

▶ Using ∆t and Varsa,t compute Ht(s, a) and H⋆
t .

2. Using these values, compute ω⋆ (use certainty equivalence), and use it to explore the

environment

ω⋆
t (s, a) ∝

Ht(s, a) a ̸= π⋆
t (s),»

H
∑

s,a̸=π⋆
t (s)

H⋆
t (s, a)/|S| otherwise.

However, ....
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Boostrapped MF-BPI

▶ ω⋆
t (s, a) explores according to the current estimate of the aleatoric uncertainty of the

MDP (∆t(s, a),Varsa,t[V
⋆]). It does not account for parametric uncertainty (uncertainty

of the model).

▶ MDP-NAS [Marjani and Proutiere, 2021] requires a forced exploration step (e.g., mix ω⋆

with a uniform distribution) to reduce the parametric uncertainty asymptotically.

▶ Instead, we quantify the parametric uncertainty about Q⋆,Varsa[V
⋆] using an ensemble of

models.

▶ We approximately sample from this uncertainty and use it to compute ω⋆
t .
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Environment: Slipping DeepSea problem

▶ Only diagonal movements + negative reward at each step (except for the last row).

▶ Last row: zero reward unless the agent reaches the last column.

▶ Probability of slipping, i.e. the agent goes in the wrong direction, is 5%.
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Results: DeepSea problem
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Slipping DeepSea − Exploration

Slipping DeepSea problem. On the left: total number of successful episodes for a grid 30× 30. On

the right: standard deviation of tvisit at the last episode, depicting how much each agent explored (the

lower the better).
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Conclusion

Exploration needs to be tailored according to the difficulty of the underlying MDP:

▶ Leverage instance-specific results.

▶ Explore according to both aleatoric (∆(s, a),Varsa[V
⋆]) and parametric uncertainty.

Check the paper for more results and information! Thank you for listening!
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