# Implicit Regularization in Over-Parameterized Support Vector Machine

Yang Sui, Xin He and Yang Bai

Shanghai University of Finance and Economics

NeurIPS 2023

• The performance of Deep Learning



- Applications of Deep Learning
  - Imaging classification
  - Natural language processing
  - Artificial intelligence

- Applying deep learning to tasks such as regression and classification, the regression function or classifier is represented by a deep neural network
- Difficulties:
  - the loss function is nonconvex, with saddle points and local minima
  - the neural network is over-parameterized
- Simple algorithms such as gradient descent tend to find the global minimum of the loss function

- Neyshabur et al. (2015), Zhang et al. (2016) show that the generalization stems from an **implicit regularization** of the optimization algorithm
- In over-parametrized models, although the optimization problems consist of bad local minima, the choice of optimization algorithm, usually gradient descent, guard the iterates from local minima
- Without any regularization in optimization objective, the implicit preference of the algorithm itself plays the role of regularization

- Matrix factorization: Gunasekar et al. (2017); Li et al. (2018)
  - $\min ||\mathbf{A}\mathbf{X} \mathbf{Y}||_2^2$ , rewrite the parameter as  $\mathbf{X} = \mathbf{U}\mathbf{U}^T$ , estimate the true parameter by updating U via gradient descent
  - gradient descent biases towards the minimum nuclear norm solution
- Linear regression: Vaskevicius et al. (2019); Zhao et al. (2019)
  - re-parametrize the parameter using two vectors  $\beta = \mathbf{g} \odot \mathbf{h}$  or  $\beta = \mathbf{g} \odot \mathbf{g} - \mathbf{h} \odot \mathbf{h}$  via the Hadamard product
  - gradient descent yields an estimator with optimal statistical accuracy

- Study the implicit regularization of gradient descent for high-dimensional SVM
- Consider the non-differentiability of hinge loss
- Provide evidence of implicit regularization from theoretical and empirical perspective

Given a random sample  $\mathcal{Z}^n = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$  with  $\mathbf{x}_i \in \mathbb{R}^p$  and  $y_i \in \{-1, 1\}$ ,  $\ell_1$ -regularized SVM that

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (1 - y_i \mathbf{x}_i^T \boldsymbol{\beta})_+ + \lambda \|\boldsymbol{\beta}\|_1,$$

Directly minimize the hinge loss and rewrite  $oldsymbol{eta} = \mathbf{w} \odot \mathbf{w} - \mathbf{v} \odot \mathbf{v}$ ,

$$\mathcal{E}_{\mathcal{Z}^n}(\mathbf{w},\mathbf{v}) = \frac{1}{n} \sum_{i=1}^n \left( 1 - y_i \mathbf{x}_i^T (\mathbf{w} \odot \mathbf{w} - \mathbf{v} \odot \mathbf{v}) \right)_+.$$

Update  $\mathbf{w}_t$  and  $\mathbf{v}_t$  via gradient descent and  $oldsymbol{eta}_t = \mathbf{w}_t \odot \mathbf{w}_t - \mathbf{v}_t \odot \mathbf{v}_t$ 

- The dimensionality of  $\beta$  is p, but 2p-dimensional parameter is involved
- $\|\boldsymbol{\beta}\|_1 = \arg\min_{\boldsymbol{\beta} = \mathbf{a} \odot \mathbf{c}} (\|\mathbf{a}\|^2 + \|\mathbf{c}\|^2)/2$
- $\ell_1$  regularization is to  $\min_{\mathbf{a},\mathbf{c}} \mathcal{E}_{\mathcal{Z}^n}(\mathbf{a},\mathbf{c}) + \lambda (\|\mathbf{a}\|^2 + \|\mathbf{c}\|^2)/2$
- $\mathbf{w}=\frac{\mathbf{a}+\mathbf{c}}{2}$  and  $\mathbf{v}=\frac{\mathbf{a}-\mathbf{c}}{2}$  and then  $\boldsymbol{\beta}=\mathbf{w}\odot\mathbf{w}-\mathbf{v}\odot\mathbf{v}$
- Drop the explicit l<sub>2</sub>-regularized term and perform gradient descent to minimize E<sub>Z<sup>n</sup></sub>(w, v), following the neural network learning

- Hinge loss function is not differentiable
- First-order methods such as sub-gradient and stochastic gradient methods converge slowly and are not suitable for large-scale problems
- Second-order methods like Newton and Quasi-Newton methods achieve better convergence rates, but the computational cost is expensive

Nesterov's smoothing:

$$\min_{\mathbf{w},\mathbf{v}} \mathcal{E}_{\mathcal{Z}^n}(\mathbf{w},\mathbf{v}) \equiv \min_{\mathbf{w},\mathbf{v}} \max_{\boldsymbol{\mu}\in\mathcal{P}_1} \frac{1}{n} \sum_{i=1}^n \left(1 - y_i \mathbf{x}_i^T(\mathbf{w}\odot\mathbf{w} - \mathbf{v}\odot\mathbf{v})\right) \mu_i,$$

where  $\mathcal{P}_1 = \{ \boldsymbol{\mu} \in \mathbb{R}^n : 0 \leq \mu_i \leq 1 \}.$ 

The above saddle point function can be smoothed by subtracting a prox-function  $d_{\gamma}(\mu) = \frac{\gamma}{2} \|\mu\|^2$ ,

$$\mathcal{E}^*_{\mathcal{Z}^n,\gamma}(\mathbf{w},\mathbf{v}) \equiv \max_{\boldsymbol{\mu}\in\mathcal{P}_1} \Big\{ \frac{1}{n} \sum_{i=1}^n \big( 1 - y_i \mathbf{x}_i^T(\mathbf{w}\odot\mathbf{w} - \mathbf{v}\odot\mathbf{v}) \big) \mu_i - d_\gamma(\boldsymbol{\mu}) \Big\},\$$

 $\mu_i$  can be obtained directly,

$$\mu_i = \mathsf{median}\left(0, \frac{1 - y_i \mathbf{x}_i^T(\mathbf{w} \odot \mathbf{w} - \mathbf{v} \odot \mathbf{v})}{\gamma n}, 1\right)$$

Larger  $\gamma$  yields larger approximation error

Algorithm 1: Gradient Descent for High-Dimensional Sparse SVM.

**Given**: Training set  $Z^n$ , initial value  $\alpha$ , stepsize  $\eta$ , proxy parameter  $\gamma$ , maximum iteration number  $T_1$ , validation set  $\widetilde{Z}^n$ ; **Initialize**:  $\mathbf{w}_0 = \alpha \mathbf{1}$ ,  $\mathbf{v}_0 = \alpha \mathbf{1}$ , and set iteration index t = 0. **While**  $t < T_1$ , **do** 

$$\mathbf{w}_{t+1} = \mathbf{w}_t + 2\eta \frac{1}{n} \sum_{i=1} y_i \mu_{t,i} \mathbf{x}_i \odot \mathbf{w}_t;$$

$$\mathbf{v}_{t+1} = \mathbf{v}_t - 2\eta \frac{1}{n} \sum_{i=1}^n y_i \mu_{t,i} \mathbf{x}_i \odot \mathbf{v}_t;$$

$$\begin{aligned} \boldsymbol{\beta}_{t+1} &= \mathbf{w}_{t+1} \odot \mathbf{w}_{t+1} - \mathbf{v}_{t+1} \odot \mathbf{v}_{t+1}; \\ \boldsymbol{\mu}_{t+1,i} &= \mathsf{median}\Big(0, \frac{1 - y_i \mathbf{x}_i^T \boldsymbol{\beta}_{t+1}}{n\gamma}, 1\Big); \\ t &= t+1; \end{aligned}$$

End if  $t > T_1$  or  $\mu_{t+1} = 0$ . Return Set  $\hat{\beta}$  as  $\beta^t$ .

#### Remarks:

- $\mathbf{w}_0 = \mathbf{v}_0 = \alpha \mathbf{1}_{p \times 1}$ , where  $\alpha > 0$  is a small constant. The zero component is initialized close to zero, while the non-zero component receives a non-zero initialization
- ullet the stopping condition can be determined based on the value of  $\mu$
- Computational cost is the vector multiplication. Significant portion of the elements in μ are either 0 or 1, and the proportion of these elements increases substantially as γ decreases

## Theoretical Analysis

#### Assumptiions

- True parameters:  $\beta^* = \arg \min_{\beta} \mathbb{E}(1 y\mathbf{x}^T \beta)_+$ .  $\beta^* \in \mathbb{R}^p$  is s-sparse signal
- $\bullet \ \mbox{Let} \ S \subset \{1, \ldots, p\}$  denote support of  ${\mathcal B}^*$  , and the size |S| of S is s
- Within the s nonzero signal components of  $\beta^*$ , define the index set of strong signals as  $S_1 = \{i \in S : |\beta_i^*| \ge C_s \log p \sqrt{\log p/n}\}$  and weak signals as  $S_2 = \{i \in S : |\beta_i^*| \le C_w \sqrt{\log p/n}\}$ .  $s_1$  and  $s_2$  are the cardinalities of  $S_1$  and  $S_2$
- $m = \min_{i \in S_1} |\beta_i^*|$  and  $\kappa$  is the condition number as the ratio between the largest absolute value of strong signal to the smallest one

#### Assumptiions

- The design matrix  $\mathbf{X}/\sqrt{n}$  satisfies  $\delta$ -incoherence with  $0 < \delta \lesssim 1/(\kappa s \log p)$ . In addition, every entry x of  $\mathbf{X}$  is i.i.d. zero-mean sub-Gaussian random variables with bounded sub-Gaussian norm  $\sigma$
- The initialization size  $\alpha$  satisfies  $0<\alpha\lesssim 1/p$ , the parameter of prox-function  $\gamma$  satisfies  $0<\gamma\leq 1/n$ , and the stepsize  $\eta$  satisfies  $0<\eta\lesssim 1/(\kappa\log p)$

#### Theory 1

Suppose that Assumptions hold, then there exist positive constants  $c_1, c_2, c_3$ and  $c_4$  such that there holds with probability at least  $1 - c_1 n^{-1} - c_2 p^{-1}$ that, for every t with  $c_3 \log(m/\alpha^2)/(\eta m) \le t \le c_4 \log(1/\alpha)/(\eta \log n)$ , the solution of the t-th iteration in Algorithm,  $\beta_t = \mathbf{w}_t \odot \mathbf{w}_t - \mathbf{v}_t \odot \mathbf{v}_t$ , satisfies

$$\|oldsymbol{eta}_t - oldsymbol{eta}^*\|^2 \lesssim rac{s\log p}{n}$$

- the convergence rate in terms of the  $\ell_2$ -norm is  $\mathcal{O}(\sqrt{s\log p/n})$
- Such a convergence rate matches the near-oracle rate of sparse SVM and can be attained through explicit regularization like l<sub>1</sub>-norm penalty, as well as concave penalties

- We can control the estimated strengths associated with the non-signal and weak signal components, denoted as ||w<sub>t</sub> ⊙ 1<sub>S<sub>1</sub><sup>c</sup></sub>||<sub>∞</sub> and ||v<sub>t</sub> ⊙ 1<sub>S<sub>1</sub><sup>c</sup></sub>||<sub>∞</sub> at the same order as the square root of the initial value α up to O(log(1/α)/(η log n)) steps. α governs the size of coordinates outside the signal support S<sub>1</sub>
- Strong signal part, denoted as  $\beta_t \odot \mathbf{1}_{S_1}$ , grows exponentially with an accuracy of approximately  $\mathcal{O}(\log p/n)$  around the true parameter  $\beta^* \odot \mathbf{1}_{S_1}$  within approximately  $\mathcal{O}(\log(m/\alpha^2)/(\eta m))$  steps

Setup:

- Generate 3n independent observations, divided evenly into three parts: one for training, one for validation, and one for testing
- $\boldsymbol{\beta}^* = m \mathbf{1}_S$  for a constant m
- Entries of **X** are sampled as *i.i.d.* zero-mean Gaussian r.v.s, and the labels *y* follow a binomial distribution
- True signal strength m = 10, number of signals s = 4, sample size n = 200, dimension p = 400, stepsize  $\eta = 0.5$ , prox-parameter  $\gamma = 10^{-4}$ , and initialization size  $\alpha = 10^{-8}$
- Estimation error:  $\|\beta_t/\|\beta_t\| \beta^*/\|\beta^*\|\|$ , prediction accuracy:  $P(\hat{y} = y_{test})$
- Variable selection error "False positive" and "True negative"





## Effects of Signal Strength and Sample Size

True signal strength:  $m = 0.5 * k, k = 1, \dots, 20$ 



## Effects of Signal Strength and Sample Size

#### Sample size: n = 50 \* k for $k = 1, \dots, 8$



## Performance on Complex Signal Structure

Five signal structures:  $\mathbf{A} - (5, 6, 7, 8)$ ,  $\mathbf{B} - (4, 6, 8, 9)$ ,  $\mathbf{C} - (3, 6, 9, 10)$ ,  $\mathbf{D} - (2, 6, 10, 11)$  and  $\mathbf{E} - (1, 6, 11, 12)$ 



### Performance on Heavy-tailed Distribution

Five signal structures:  $\mathbf{A} - (5, 6, 7, 8)$ ,  $\mathbf{B} - (4, 6, 8, 9)$ ,  $\mathbf{C} - (3, 6, 9, 10)$ ,  $\mathbf{D} - (2, 6, 10, 11)$  and  $\mathbf{E} - (1, 6, 11, 12)$ Sample  $\mathbf{X}$  from t(3) distribution



### • Summary:

- leverage over-parameterization to design unregularized gradient-based algorithm for SVM
- provide theoretical guarantees for implicit regularization
- Nesterov's method is employed to smooth the re-parameterized hinge loss function

#### Follow-up work:

- whether our results are still valid without the incoherence
- explore the deeper depths of re-parameterization in classification
- consider non-linear SVM

### References

- Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Implicit regularization in matrix factorization. *Advances in neural information processing systems*, 30, 2017.
- Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized matrix sensing and neural networks with quadratic activations. In *Conference On Learning Theory*, pages 2–47. PMLR, 2018.
- Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the role of implicit regularization in deep learning. *International Conference on Learning Representations*, 2015.
- Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for optimal sparse recovery. Advances in Neural Information Processing Systems, 32, 2019.
- Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning requires rethinking generalization. In *International Conference on Learning Representations*, 2016.
- Peng Zhao, Yun Yang, and Qiao-Chu He. Implicit regularization via hadamard product over-parametrization in high-dimensional linear regression. *arXiv* preprint arXiv:1903.09367, 2(4):8, 2019.