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Motivation

The performance of Deep Learning

Applications of Deep Learning

Imaging classification

Natural language processing

Artificial intelligence
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Motivation

Applying deep learning to tasks such as regression and classification,

the regression function or classifier is represented by a deep neural

network

Difficulties:

the loss function is nonconvex, with saddle points and local minima

the neural network is over-parameterized

Simple algorithms such as gradient descent tend to find the global

minimum of the loss function
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Implicit Regularization

Neyshabur et al. (2015), Zhang et al. (2016) show that the

generalization stems from an implicit regularization of the

optimization algorithm

In over-parametrized models, although the optimization problems

consist of bad local minima, the choice of optimization algorithm,

usually gradient descent, guard the iterates from local minima

Without any regularization in optimization objective, the implicit

preference of the algorithm itself plays the role of regularization
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Literature Review

Matrix factorization: Gunasekar et al. (2017); Li et al. (2018)

min ||AX−Y||22, rewrite the parameter as X = UUT , estimate the

true parameter by updating U via gradient descent

gradient descent biases towards the minimum nuclear norm solution

Linear regression: Vaskevicius et al. (2019); Zhao et al. (2019)

re-parametrize the parameter using two vectors β = g ⊙ h or

β = g ⊙ g − h⊙ h via the Hadamard product

gradient descent yields an estimator with optimal statistical accuracy
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Our Goal

Study the implicit regularization of gradient descent for

high-dimensional SVM

Consider the non-differentiability of hinge loss

Provide evidence of implicit regularization from theoretical and

empirical perspective
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Over-parameterization for ℓ1-regularized SVM

Given a random sample Zn = {(xi, yi)}ni=1 with xi ∈ Rp and yi ∈ {−1, 1},
ℓ1-regularized SVM that

min
β∈Rp

1

n

n∑
i=1

(1− yix
T
i β)+ + λ∥β∥1,

Directly minimize the hinge loss and rewrite β = w ⊙w − v ⊙ v,

EZn(w,v) =
1

n

n∑
i=1

(
1− yix

T
i (w ⊙w − v ⊙ v)

)
+
.

Update wt and vt via gradient descent and βt = wt ⊙wt − vt ⊙ vt
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Over-parameterization for ℓ1-regularized SVM

The dimensionality of β is p, but 2p-dimensional parameter is involved

∥β∥1 = argminβ=a⊙c(∥a∥2 + ∥c∥2)/2

ℓ1 regularization is to mina,c EZn(a, c) + λ
(
∥a∥2 + ∥c∥2

)
/2

w = a+c
2 and v = a−c

2 and then β = w ⊙w − v ⊙ v

Drop the explicit ℓ2-regularized term and perform gradient descent to

minimize EZn(w,v), following the neural network learning
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Nesterov’s smoothing

Hinge loss function is not differentiable

First-order methods such as sub-gradient and stochastic gradient

methods converge slowly and are not suitable for large-scale problems

Second-order methods like Newton and Quasi-Newton methods achieve

better convergence rates, but the computational cost is expensive

Nesterov’s smoothing:

min
w,v

EZn(w,v) ≡ min
w,v

max
µ∈P1

1

n

n∑
i=1

(
1− yix

T
i (w ⊙w − v ⊙ v)

)
µi,

where P1 = {µ ∈ Rn : 0 ≤ µi ≤ 1}.
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Nesterov’s smoothing

The above saddle point function can be smoothed by subtracting a

prox-function dγ(µ) =
γ
2∥µ∥

2,

E∗
Zn,γ(w,v) ≡ max

µ∈P1

{ 1

n

n∑
i=1

(
1− yix

T
i (w ⊙w − v ⊙ v)

)
µi − dγ(µ)

}
,

µi can be obtained directly,

µi = median
(
0,

1− yixi
T (w ⊙w − v ⊙ v)

γn
, 1
)

Larger γ yields larger approximation error

10 / 24



Implicit regularization via gradient descent

Algorithm 1: Gradient Descent for High-Dimensional Sparse SVM.

Given: Training set Zn, initial value α, stepsize η, proxy parameter γ, maximum
iteration number T1, validation set Z̃n;
Initialize: w0 = α1, v0 = α1, and set iteration index t = 0.
While t < T1, do

wt+1 = wt + 2η
1

n

n∑
i=1

yiµt,ixi ⊙wt;

vt+1 = vt − 2η
1

n

n∑
i=1

yiµt,ixi ⊙ vt;

βt+1 = wt+1 ⊙wt+1 − vt+1 ⊙ vt+1;

µt+1,i = median
(
0,

1− yixi
Tβt+1

nγ
, 1
)
;

t = t+ 1;

End if t > T1 or µt+1 = 0.

Return Set β̂ as βt.
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Implicit regularization via gradient descent

Remarks:

w0 = v0 = α1p×1, where α > 0 is a small constant. The zero

component is initialized close to zero, while the non-zero component

receives a non-zero initialization

the stopping condition can be determined based on the value of µ

Computational cost is the vector multiplication. Significant portion of

the elements in µ are either 0 or 1, and the proportion of these

elements increases substantially as γ decreases
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Theoretical Analysis

Assumpotions

True parameters: β∗ = argminβ E(1− yxTβ)+. β
∗ ∈ Rp is s-sparse

signal

Let S ⊂ {1, . . . , p} denote support of β∗, and the size |S| of S is s

Within the s nonzero signal components of β∗, define the index set of

strong signals as S1 = {i ∈ S : |β∗
i | ≥ Cs log p

√
log p/n} and weak

signals as S2 = {i ∈ S : |β∗
i | ≤ Cw

√
log p/n}. s1 and s2 are the

cardinalities of S1 and S2

m = mini∈S1 |β∗
i | and κ is the condition number as the ratio between

the largest absolute value of strong signal to the smallest one
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Theoretical Analysis

Assumpotions

The design matrix X/
√
n satisfies δ-incoherence with

0 < δ ≲ 1/(κs log p). In addition, every entry x of X is i.i.d.

zero-mean sub-Gaussian random variables with bounded sub-Gaussian

norm σ

The initialization size α satisfies 0 < α ≲ 1/p , the parameter of

prox-function γ satisfies 0 < γ ≤ 1/n, and the stepsize η satisfies

0 < η ≲ 1/(κ log p)
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Theoretical Analysis

Theory 1

Suppose that Assumptions hold, then there exist positive constants c1, c2, c3

and c4 such that there holds with probability at least 1− c1n
−1 − c2p

−1

that, for every t with c3 log(m/α2)/(ηm) ≤ t ≤ c4 log(1/α)/(η log n), the

solution of the t-th iteration in Algorithm, βt = wt ⊙wt − vt ⊙ vt, satisfies

∥βt − β∗∥2 ≲ s log p

n
.

the convergence rate in terms of the ℓ2-norm is O(
√
s log p/n)

Such a convergence rate matches the near-oracle rate of sparse SVM

and can be attained through explicit regularization like ℓ1-norm

penalty, as well as concave penalties
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Proof Sketch

We can control the estimated strengths associated with the non-signal

and weak signal components, denoted as ∥wt ⊙ 1Sc
1
∥∞ and

∥vt ⊙ 1Sc
1
∥∞ at the same order as the square root of the initial value α

up to O(log(1/α)/(η log n)) steps. α governs the size of coordinates

outside the signal support S1

Strong signal part, denoted as βt ⊙ 1S1 , grows exponentially with an

accuracy of approximately O(log p/n) around the true parameter

β∗ ⊙ 1S1 within approximately O(log(m/α2)/(ηm)) steps
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Numerical Study

Setup:

Generate 3n independent observations, divided evenly into three parts:

one for training, one for validation, and one for testing

β∗ = m1S for a constant m

Entries of X are sampled as i.i.d. zero-mean Gaussian r.v.s, and the

labels y follow a binomial distribution

True signal strength m = 10, number of signals s = 4, sample size

n = 200, dimension p = 400, stepsize η = 0.5, prox-parameter

γ = 10−4, and initialization size α = 10−8

Estimation error: ∥βt/∥βt∥ − β∗/∥β∗∥∥, prediction accuracy:

P (ŷ = ytest)

Variable selection error ”False positive” and ”True negative”
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Effects of Small Initialization

Initialization size: α = {10−4, 10−6, 10−8, 10−10}
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Effects of Signal Strength and Sample Size

True signal strength: m = 0.5 ∗ k, k = 1, . . . , 20
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Effects of Signal Strength and Sample Size

Sample size: n = 50 ∗ k for k = 1, . . . , 8
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Performance on Complex Signal Structure

Five signal structures: A− (5, 6, 7, 8), B− (4, 6, 8, 9), C− (3, 6, 9, 10),

D− (2, 6, 10, 11) and E− (1, 6, 11, 12)
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Performance on Heavy-tailed Distribution

Five signal structures: A− (5, 6, 7, 8), B− (4, 6, 8, 9), C− (3, 6, 9, 10),

D− (2, 6, 10, 11) and E− (1, 6, 11, 12)

Sample X from t(3) distribution
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Summary and Follow-up Work

Summary:

leverage over-parameterization to design unregularized gradient-based

algorithm for SVM

provide theoretical guarantees for implicit regularization

Nesterov’s method is employed to smooth the re-parameterized hinge

loss function

Follow-up work:

whether our results are still valid without the incoherence

explore the deeper depths of re-parameterization in classification

consider non-linear SVM
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