CELL-E2: Translating Proteins to Pictures and Back with a Bidirectional Text-to-Image Transformer

Emaad Khwaja UC Berkeley - UCSF Bioengineering Graduate Program UC Berkeley EECS

Goal

Predict protein localization in silico.

Protein Sequence

LVLV NLT MNF **ITV** GDD FSWI VSF EDK **ND...**

Nucleus Image

Predicted Localization

Proteins dictate biological function.

Primary protein structure sequence of a chain of animo acids

Secondary protein structure hydrogen bonding of the peptide backbone causes the amino acids to fold into a repeating pattern

Tertiary protein structure three-dimensional folding pattern of a protein due to side chain interactions

Quaternary protein structure protein consisting of more than one amino acid chain

Source: Khan Academy

Predicting localization allows us to gain fundamental understanding of biology.

Source: Genome Research Limited

Correct localization is necessary for function.

Mislocalization can result in dysfunction and disease.

CELL-E

Nucleus Image

SequenceMSGDHLHNDSQIEADFRLNDSHKHKDKH KDREHRHKEHKKEKDREKSKHSNSEHKI S E K K H K E K E K T K H K D G S S E K H K D K H K D R K E K RKEEKVRASGDAKIKKEKENGFSS P P Q I K D E P E D D G Y F V P P K E D I K P L K R P R) E D D A D Y K P K K I K T E D T K K E K K R K L E I EDG KPKNKDKDKKVPEPDNKKKKP **KEE** QKWKWWEEERYPEGIKW ENVKFYYDGKV MLDHEY) W F NEEKNIITNLSKCDFTQMSQY F K A Q T E A R K Q M S K E E K L K I K E E N E K L L K EYGFCIMDNHKERIANFKIEP GNH PKMGMLKRRIMPEDIIINCSKDAK PS P P G H K W K E V R H D N K V T W L V S W T E N) G S I M L N P S S R I K G E K D W Q K Y E **T** A R L K K C V D K J R N Q Y R E D W K S K E M K V R Q R ΙAΙ RAGNEKEEGETADTVGC S L LHPELDGQEYVVEFDFLGK PVEKRVFKNLQLFMENKQI) S \Box DRLNTGILNKHLQDLMEGLTAKV EDD ASITLQQQLKELTAPDENIPAKI F R T NRAVAILCNHQRAPPKTFEKSM LSYNR M N L Q T K I D A K K E Q L A D A R R D L K S A K A D A K VMKDAKTKKVVESKKKAVQRLEEQLMK LEVQATDREENKQIALGTSKLNYLDPRI TVAWCKKWGVPIEKIYNKTQREKFAWAI DMADEDYE DNA Topoisomerase I Relative Attention Weights

Predicted Threshold Image

CELL-E2

- Small dataset
 - Not many proteins in OpenCell
- Unidirectional
 - Can do text-to-image but cant tell you what text should be there with a localization pattern
- Autoregressive generation is slow

THE HUMAN PROTEIN ATLAS

- Small dataset
 - Not many proteins in OpenCell
- Unidirectional
 - Can do text-to-image but cant tell you what text should be there with a localization pattern
- Autoregressive generation is slow

- Small dataset
 - Not many proteins in OpenCell
- Unidirectional
 - Can do text-to-image but cant tell you what text should be there with a localization pattern
- Autoregressive generation is slow

Outputs (shifted right)

- Small dataset
 - Not many proteins in OpenCell
- Unidirectional
 - Can do text-to-image but cant tell you what text should be there with a localization pattern
- Autoregressive generation is slow

Outputs (shifted right)

- Small dataset
 - Not many proteins in OpenCell
- Unidirectional
 - Can do text-to-image but cant tell you what text should be there with a localization pattern
- Autoregressive generation is slow

- Small dataset
 - Not many proteins in OpenCell
- Unidirectional
 - Can do text-to-image but cant tell you what text should be there with a localization pattern
- Autoregressive generation is slow

- Small dataset
 - Not many proteins in OpenCell
- Unidirectional
 - Can do text-to-image but cant tell you what text should be there with a localization pattern
- Autoregressive generation is slow

MaskGIT: Masked Generative Image Transformer

Huiwen Chang Han Zhang Lu Jiang Ce Liu* William T. Freeman Google Research

- Small dataset
 - Not many proteins in OpenCell
- Unidirectional
 - Can do text-to-image but cant tell you what text should be there with a localization pattern
- Autoregressive generation is slow

- Small dataset
 - Not many proteins in OpenCell
- Unidirectional
 - Can do text-to-image but cant tell you what text should be there with a localization pattern
- Autoregressive generation is slow

Thresholded Label (Ground Truth)

Original Image

Chromosome-associated kinesin KIF4A

T-complex protein 1 subunit theta

rnospnatidymositoi -binding clathrin assembly protein

Proteasome assembly chaperone 2

Generated Image

Predicted Distribution

Thresholded Label (Ground Truth)

Original Image

Eukaryotic translation initiation factor 5

Proteasome assembly chaperone 3

Probable ATP-dependent RNA helicase DDX5

Proteasome activator complex subunit 4

ADP-ribosylation factor-like protein 2-binding protein

Generated Image

Original Image

Generated Image

Predicted Distribution

Thresholded Label (Ground Truth)

Generated Image

Predicted Distribution

OpenCell Model

Thresholded Label (Ground Truth)

Generated Image

Predicted Distribution

HPA

Thresholded Label (Ground Truth)

Generated Image

Predicted Distribution

HPA

Thresholded Label (Ground Truth)

Generated Image

Predicted Distribution

Original Image Model

HPA

HPA

Finetuned (HPA VQGAN)

Thresholded Label (Ground Truth)

Generated Image

Predicted Distribution

Original Image Model

HPA

HPA

Finetuned (HPA VQGAN)

CELL-E vs CELL-E 2 On OpenCell Validation Set

	Nucleus % MAE	Pixel Image MAE	PDF MAE	SSIM	FID	IS
CELL-E	.0347 ± .0294	.3671 ± .1117	.3653 ± .1008	.2060 ± .1846	10.5555	2.4762 ± .C
CELL-E 2	.0170 ± .0160	.3449 ± .1305	.3487 ± .1340	.1881 ± .1541	19.2683	3.6083±.2

Table S8: Speed Comparison

Model	Hidden Size	Autoregressive	Mean Generation Time (s)
CELL-E (Cached) CELL-E (Non-Cached)	768 768	Yes	$\begin{array}{c} 18.2740 \pm 0.0451 \\ 28.7694 \pm 0.3207 \end{array}$
CELL-E 2 CELL-E 2 CELL-E 2 CELL-E 2	480 640 1280 2560	Yes Yes Yes	$\begin{array}{c} 55.0057 \pm 0.2069 \\ 62.9650 \pm 0.1033 \\ 74.3698 \pm 0.1788 \\ 128.9960 \pm 0.3718 \end{array}$
CELL-E 2 CELL-E 2 CELL-E 2 CELL-E 2	480 640 1280 2560	No No No	$\begin{array}{l} \textbf{0.2784} \pm \textbf{0.0006} \\ 0.3067 \pm 0.0012 \\ 0.3249 \pm 0.0011 \\ 0.5487 \pm 0.0022 \end{array}$

66x Haster with Better Performance!

Sequence

Nucleus Image

 \mathbf{O}

N

LQI

GDHLHNDSQIEADFRLNDSHKHKDKH DREHRHKEHKKEKDREKSKHSNSEHK EKKHKEKEKTKHKDGSSEKHKDKHKD EEKVRASGDAKIKKEKE _ K K P K N K D K D K K V P E I DGK EEEOKWKWWEEERYPEGIKW EMT NEEKNIITNLSKCDFTQMSQY WRK KAQTEARKQMSKEEKLKIKEE Y G FSRIKGEKDWQ INLHPELDGOEYVVEFDF YNKVPVEKRVFKNLQLFMENKQ DDI DRLNTGILNKHLODLMEGLTAKV RTYNAS ITLQQQLKELTAPDEN I PAK SYNR ANRAVAILCNHQRAPPKTFEKS ANLOTKI DAKKEQLADARRDLKSAKAD K V M K D A K T K K V V E S K K K A V Q R L E E Q L M K EVQATDREENKQIALGTSKLNYLDPRI T VAWCKKWGVPIEKIYNK TQREKFAWAI DMADEDYE

Sequence

1,25-dihydroxyvitamin D(3) 24-hydroxylase, mitochondrial **Relative Attention Weights**

Nucleus Image

ISSPISKSRSLAAFI Q L R S P R Q PPRLV**T**STAYTSPQPR VPVCPL P T 통 W P L L G S TAGGETQNAAAL L W K G G L K K Q H D T L V E Y H VHLGSPCLL $\mathbf{F} \mathbf{R} \mathbf{M} \mathbf{K} \mathbf{L}$ EALYRTESAMPQRLEIKPWKAYR DYRKEGYGLLILEGEDWQRVRSA Q K K L M K P G E V M K L D N K I N 🕑 V L A D F M G R I D C L C D E R G H V E D L Y S E L NKWSFESICLVLYEKRFGLLQKN AGDEAVNFIMAIK S T F G R M M V T P V 🗉 🛯 H K S L N T K V W Q D H T L A W D T I F K S V K A C I D N R L E K Y S Q Q P S A D F L C D I Y H Q N R L S K K E L Y LQLAAVETTANSLMWILYNLSRN PQVQQKLLKEIQSVLPENQVPRA EDLRNMPYLKMCLMESMRLTPSV PFTTRTLDKATVLGEYALPKGTV LMLNTQVLGSSEDNFEDSSQFRP ERWLQEKEKINPFAHLPFGVGKR M C I G R R L A E L Q L H L A L C W I V R K Y D I Q A T D N D P V E M L H S G T L V P S R E LPIAFCQR

DNA Topoisomerase I Relative Attention Weights

Predicted Threshold Image

Predicted Threshold Image

Predicted PDF

De novo Protein Design

UNFOLDED PROTEIN

Source: Molecular Biology of the Cell, 4th Edition

NLSdb sequence search results

Show 10 💠 entries

Copy CSV									Previous 1	Next
Query	Signal 🍦	SignalType 🌲	Start 🖕	End	ConfNuc	ConfFam 🖕	AnnotationType	Origin 🌲	Added	Modified
query	DKEKRK	NLS	85	90	3	3	Potential	In Silico Mutagenesis	2017-10-11	2017-10-11
query	KEKKRK	NLS	159	164	6	6	Potential	In Silico Mutagenesis	2017-10-11	2017-10-11
query	KKRKLE	NLS	161	166	14	13	By Expert	P02545, P48678, P48679, Q3ZD69	2017-10-11	2017-10-11
query	PLKRPR	NLS	135	140	4	3	Potential	In Silico Mutagenesis	2017-10-11	2017-10-11
All	All O	All 🗢					All	All 🗢		
Showing 1 to 4 of 4 entries										

This is an updated version of NLSdb. The legacy NLSdb can be found here. If you have questions and/or encounter any problems, you can contact us here. Copyright © 2017 Michael Bernhofer, Tatyana Goldberg and Burkhard Rost, ROSTLAB all rights reserved.

CONTACT | HELP | IMPRINT

- Pre-select number of masked positions
- Generate 300 candidates per terminus with sequence model
- Feed predicted sequence to image model to cross-validate

MSKGEELFTGVVPILVELDGDVN GHKFSVSGEGEGDATYGKLTLKF ICTTGKLPVPWPTLVTTFSYGVQ CFSRYPDHMKQHDFFKSAMPEGY VQERTIFFKDDGNYKTRAEVKFE GDTLVNRIELKGIDFKEDGNILG HKLEYNYNSHNVYIMADKQKNGI KVNFKIRHNIEDGSVQLADHYQQ NTPIGDGPVLLPDNHYLSTQSAL SKDPNEKRDHMVLLEFVTAAGIT HGMDELYK

- Pre-select number of masked positions
- Generate 300 candidates per terminus with sequence model
- Feed predicted sequence to image model to cross-validate

<start>MSKGEELFTGVVPILV ELDGDVNGHKFSVSGEGEGDATY GKLTLKFICTTGKLPVPWPTLVT TFSYGVQCFSRYPDHMKQHDFFK SAMPEGYVQERTIFFKDDGNYKT RAEVKFEGDTLVNRIELKGIDFK EDGNILGHKLEYNYNSHNVYIMA DKQKNGIKVNFKIRHNIEDGSVQ LADHYQQNTPIGDGPVLLPDNHY LSTQSALSKDPNEKRDHMVLLEF VTAAGITHGMDELYK**<end>**

- Pre-select number of masked positions
- Generate 300 candidates per terminus with sequence model
- Feed predicted sequence to image model to cross-validate

nd>

<start><mask>MSKGEELFTG VVPILVELDGDVNGHKFSVSGEG EGDATYGKLTLKFICTTGKLPVP WPTLVTTFSYGVQCFSRYPDHMK QHDFFKSAMPEGYVQERTIFFKD DGNYKTRAEVKFEGDTLVNRIEL KGIDFKEDGNILGHKLEYNYNSH NVYIMADKQKNGIKVNFKIRHNI EDGSVQLADHYQQNTPIGDGPVL LPDNHYLSTQSALSKDPNEKRDH MVLLEFVTAAGITHGMDELYK<e

- Pre-select number of masked positions
- Generate 300 candidates per terminus with sequence model
- Feed predicted sequence to image model to cross-validate

ALSKDPNEKRDHMVLLEFVTAAG ITHGMDELYK<end>

<start><mask><mask><mask><mask><mask><mask><mask><mask><mask><mask><maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<maskx<mask **k>**MSKGEELFTGVVPILVELDGD VNGHKFSVSGEGEGDATYGKLTL **KFICTTGKLPVPWPTLVTTFSYG** VQCFSRYPDHMKQHDFFKSAMPE GYVQERTIFFKDDGNYKTRAEVK FEGDTLVNRIELKGIDFKEDGNI LGHKLEYNYNSHNVYIMADKQKN GIKVNFKIRHNIEDGSVQLADHY QQNTPIGDGPVLLPDNHYLSTQS

- Pre-select number of masked positions
- Generate 300 candidates per terminus with sequence model
- Feed predicted sequence to image model to cross-validate

ask><mask><end>

<start>MSKGEELFTGVVPILV ELDGDVNGHKFSVSGEGEGDATY GKLTLKFICTTGKLPVPWPTLVT TFSYGVQCFSRYPDHMKQHDFFK SAMPEGYVQERTIFFKDDGNYKT RAEVKFEGDTLVNRIELKGIDFK EDGNILGHKLEYNYNSHNVYIMA DKQKNGIKVNFKIRHNIEDGSVQ LADHYQQNTPIGDGPVLLPDNHY LSTQSALSKDPNEKRDHMVLLEF VTAAGITHGMDELYK<mask><m

- Pre-select number of masked positions
- Generate 300 candidates per terminus with sequence model
- Feed predicted sequence to image model to cross-validate

- Pre-select number of masked positions
- Generate 300 candidates per terminus with sequence model
- Feed predicted sequence to image model to cross-validate

Terminus	Sequence	Terminus	Sequence
Ν	RKRRQR	С	SPTAFPSNVIETIRVKRRMEL
Ν	NKRPRKKEK	С	EFRAKYRQMGSRKKKKSGQWSA
С	RPKVI	Ν	KKHKLRSVPDLTELMRMIFLAP
С	VLKRAKKD	Ν	KLLRFAGKSGMMVLLAPHSGKM
С	RHKKKKIA	С	IFQADKDQKAHPPAKKAPSELMQ
Ν	HRRKKR	С	KGKVKSIMIPPKSRKSLAKVPLS
С	RSQKRK	Ν	AAGKSFKPRIKKSRMTRDSSETMA
Ν	KCKKKN	С	TGNRIFGETPSWERERKRPGGGQQ
Ν	KGKRFSK	С	NKLQKHSKRQPHKLQAMKLKYPTWE
С	AKRLKGK	С	LVFPNRDASIKKPLQNPPQKRRCMIM
С	SKKAKKNKM	Ν	LPKRRRLSRRKKVELEPEYGWEEEVVV
С	EEKRPRF	Ν	TEAPARTAVKKSRAMKGYIARLASSPS
Ν	MKICIT	С	IEKSKGKEAPKSSPPLKQNQRSRKMVK
Ν	AVPAKRARIDG	С	FQVRASPKGKPATKNKLRLLKIRRHRV
С	ESHHLPRAKKR	С	LQEGTRTRSQKAQEPKFKKVSGDIPNK
Ν	GKERSYPPISKR	Ν	SDPNTAQYPWMPPQATKRAAMAAREA
С	KLKKRNRQPEDKK	С	HYKKEKRKRSASPILAEEPVPKCARTL
С	GGKFATGKKKKPKM	С	LDKRKRIKPPKEEQKELMRKMWGPGS
Ν	PSKLLRQ	Ν	GSKKSRTATDSLESRMAMEDVAMGEES
С	QRRKGQKFQT	С	EGSGLVPGNSRKRPEPKKPKKRKKVRR
С	KTCPPKRPVVEW	С	RKKRQAIQAVTMGRIKKKSYEKQWSK
С	DKEKKRKNDHEK	С	ASTVPAYSRSKAGKVEPKPKQKKTQRN
Ν	FRFSC	С	SKQQAEINLKAAKPLETTDISLSKKEKK

Table S10: NLS candidates sorted by nucleus proportion.

NLS Properties

- Short (5-15 Amino Acids)
- Highly Basic (R and K)
- Clustered lacksquare

$0\% - 33\%$ 109 25.6606 ± 3.0099 20.6379 ± 8.61 $33\% - 66\%$ 133 17.1955 ± 5.0804 32.0076 ± 12.83 $66\% - 100\%$ 13 6.9231 ± 1.2558 57.5794 ± 17.93	Max ID %	# Sequences	Mean Sequence Length	Mean % R or
	0% - 33% 33% - 66% 66% - 100%	109 133 13	$25.6606 \pm 3.0099 \\ 17.1955 \pm 5.0804 \\ 6.9231 \pm 1.2558$	20.6379 ± 8.61 32.0076 ± 12.83 57.5794 ± 17.93

	High	ly Diss
Max ID %	# Sequences	Mear
0% - 33%	109	
33% - 66%	133	
66% - 100%	13	

-

similar

n Sequence Length

 25.6606 ± 3.0099 17.1955 ± 5.0804 6.9231 ± 1.2558

Mean % R or K

 20.6379 ± 8.6101 32.0076 ± 12.8334 57.5794 ± 17.9351

DeepLoc 2.0 Prediction: - 89% Nuclear Localizing Proteins - 91% contain NLS

- Leverage more data
- Incorporate structural information
- Validate *de novo* candidates

Future Directions

Thanks!