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▪ Online decision making for T slots.

Multi-armed Bandits
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Distributions:

{𝜈1, 𝜈2, ⋯ , 𝜈𝐴}
𝜇1 𝜇2 𝜇3 𝜇𝐴

Actions: 

𝐴𝑡 ∈ {1,2, ⋯ , 𝐴}
⋯

Environment:

Agent

Choose an action 𝐴𝑡

Observe a random reward 𝑟𝑡 sampled from 𝜈𝐴𝑡

Decision-making 

with UNCERTAINTY



▪ Offline MAB (Rashidinejad et al. 2021)

▪ Pessimism

Classic Views of MAB
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▪ Regret Minimization (Lai and Robbins. 1985)

▪ Exploration v.s. Exploitation

Reg𝜇 𝑇 = 𝑇𝜇𝑎∗ − 𝔼𝜇 

𝑡=1

𝑇

𝜇𝐴𝑡

▪ Best Arm Identification (Garivier, et al. 2016)

▪ Sample Complexity

min 𝜏 s.t. Pr ො𝑎𝜏 = 𝑎∗ ≥ 1 − 𝛿

▪ Online MAB (Auer et al. 2002)

▪ Optimism

𝐴𝑡 = argmax𝑎 ҧ𝑟𝑡−1 𝑎 +
𝑐log 𝑇

𝑁𝑡−1 𝑎
 

UCB bonus

ො𝑎 = argmax𝑎 ҧ𝑟𝑁 𝑎 −
𝑐log 𝑁

𝑁 𝑎
 

LCB penalty

What is the fundamental difference between online and offline data? 

Does not commit to any arm Over-exploration of suboptimal arms



What Happens in Real-World Applications
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Career choicesClinic trials

1 2 τ T⋯ ⋯

Explore Commit



Regret Optimal Best Arm Identification
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▪ Two Goals
▪ Optimal cumulative regret.

▪ Commit to optimal action quickly.

▪ Three Components
▪ Exploration

▪ Stopping 

▪ Action Identification

Rounds
1 2 𝜏 𝑇𝜏 + 1⋯ ⋯

Exploration Commitment

Stopping
Action 

Identification

Can we design an algorithm for ROBAI?

What are the fundamental limits?

min
𝜋∈ΠRO

𝔼 𝜏  such that Pr ො𝑎 ≠ 𝑎∗ = 𝒪 𝑇−1 ,

where 

ΠRO =  𝜋: limsup
𝑇→∞

Reg𝜇
𝜋 𝑇

log 𝑇
= 

𝑎≠𝑎∗

Δ𝑎

KL 𝜇𝑎, 𝜇𝑎
∗ .



EOCP: Explore Optimistically then Commit Pessimistically
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▪ Exploration
▪ Modified-UCB.

▪ Action Identification

▪ Modified-LCB algorithm.

▪ Stopping

▪ Pre-determined Stopping

▪ Adaptive Stopping

𝐴𝑡 = argmax𝑎 ҧ𝑟𝑡−1 𝑎 +
2𝑙

𝑁𝑡−1 𝑎
 

ො𝑎 = argmax𝑎 ҧ𝑟𝑡−1 𝑎 −
2𝑙

𝑁𝑡−1 𝑎

Rounds
1 2 𝜏 𝑇𝜏 + 1⋯ ⋯

Exploration

Stopping
Action 

Identification

Stop when 𝑡 =
8𝐴𝑙

Δmin
2

Stop when:

 max
𝑎

 min
𝑎′

 𝑁𝑡 𝑎 − 𝑙𝑁𝑡 𝑎′ > 1
Lower bound on the 

minimum reward gap



Main Results
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▪ Pre-determined Stopping Time:

▪ Adaptive Stopping Time:

Theorem 1. (Pre-determined)

If we choose 𝑙 = log 𝑇 + 𝑐0 log 𝑇 , the regret of EOCP is bounded:

Reg𝜇
EOCP 𝑇 ≤ 

𝑎:Δ𝑎>0

2

Δ𝑎
log 𝑇 + 𝑜 log 𝑇 .

And SCC𝜇
EOCP 𝑇 = 𝒪 Δmin

−2 log 𝑇 .

Theorem 2. (Adaptive)

If we choose 𝑙 = log 𝑇 + 𝑐0 log 𝑇 , the regret of EOCP-UG is bounded:

Reg𝜇
EOCP 𝑇 ≤ 

𝑎:Δ𝑎>0

2

Δ𝑎
log 𝑇 + 𝑜 log 𝑇 .

And SCC𝜇
EOCP 𝑇 = 𝒪 Δmin

−2 log2 𝑇 .

Sample Complexity Loss

Constant Optimal Regret



Fundamentality
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▪ Commitment Time Limits for Regret Optimal Algorithms

▪ EOCP matches the LB when Δ is known a priori.

Theorem 3 (Informal).

For 2-armed Gaussian bandit, for any algorithm 𝜋 with regret is 𝒪 log𝑐 𝑇  away from optimal, in pre-

determined setting:

SCC𝜇
𝜋 𝑇 = Ω

log 𝑇

Δ2 ,

in adaptive setting:

SCC𝜇
𝜋 𝑇 = Ω

log2−𝑐 𝑇

Δ2 .



Comparison to Literature
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Bandit Algorithm Regret Sample Complexity Confidence

UCB(Auer, et al. 2002)
2

Δ
log(𝑇) 𝑇 N/A

TS(Thompson. 1933)
2

Δ
log(𝑇) 𝑇 N/A

BAI-ETC(Garivier, et al. 2016)
4

Δ
log(𝑇) 𝒪

log 𝑇

Δ2
෨𝒪 𝑇−1

EOCP(Ours)
2

Δ
log(𝑇) 𝒪

log 𝑇

Δ2 𝒪 𝑇−1

EOCP-UG(Ours)
2

Δ
log(𝑇) 𝒪

log2 𝑇

Δ2
𝒪 𝑇−1

KL-EOCP(Ours)

Δ

KL 𝜇2, 𝜇1
log 𝑇 𝒪

log 𝑇

KL(𝜇2, 𝜇1)
𝒪 𝑇−1

Lower Bound (Gaussian)
2

Δ
log(𝑇) 𝒪

log 𝑇

Δ2 𝒪 𝑇−1

Lower Bound (General)
Δ

KL 𝜇2, 𝜇1
log 𝑇 𝒪

log 𝑇

KL(𝜇2, 𝜇1)2 𝒪 𝑇−1



Thanks!

Questions?
https://arxiv.org/abs/2309.00591
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