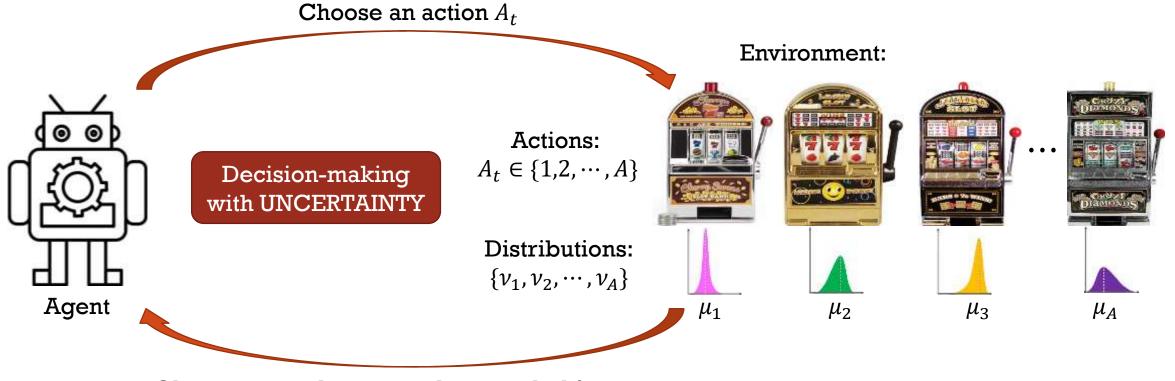
Fast and Regret-Optimal Best Arm Identification: Fundamental Limits and Low-Complexity Algorithms

Qining Zhang, Ph.D. Candidate EECS, University of Michigan, Ann Arbor

Joint work with my advisor Lei Ying (Michigan) NeurIPS 2023

Multi-armed Bandits

Online decision making for T slots.



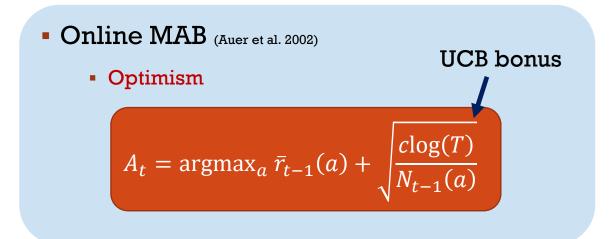
Observe a random reward r_t sampled from v_{A_t}

Classic Views of MAB

- Regret Minimization (Lai and Robbins. 1985)
 - Exploration v.s. Exploitation $\Gamma \pi$

$$\operatorname{Reg}_{\mu}(T) = T\mu_{a^*} - \mathbb{E}_{\mu} \left[\sum_{t=1}^{I} \mu_{A_t} \right]$$

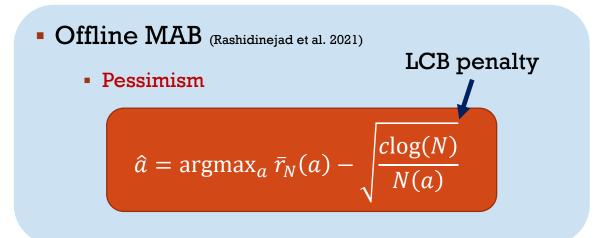
Does not commit to any arm



- Best Arm Identification (Garivier, et al. 2016)
 - Sample Complexity

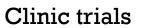
$$\min \tau \text{ s.t. } \Pr(\hat{a}_{\tau} = a^*) \ge 1 - \delta$$

Over-exploration of suboptimal arms

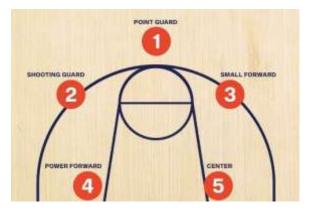


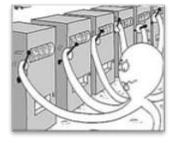
What is the fundamental difference between online and offline data?

What Happens in Real-World Applications

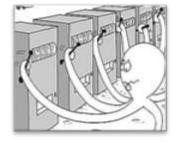


Career choices





Regret Optimal Best Arm Identification



- Two Goals
 - Optimal cumulative regret.
 - Commit to optimal action quickly.
- Three Components
 - Exploration
 - Stopping
 - Action Identification

 $\min_{\pi \in \Pi_{RO}} \mathbb{E}[\tau] \text{ such that } \Pr(\hat{a} \neq a^*) = \mathcal{O}(T^{-1}),$ where $\Pi_{RO} = \left\{ \pi: \limsup_{T \to \infty} \frac{\operatorname{Reg}_{\mu}^{\pi}(T)}{\log T} = \sum_{a \neq a^*} \frac{\Delta_a}{\operatorname{KL}(\mu_a, \mu_a^*)} \right\}.$ Stopping $\operatorname{Action}_{\text{Identification}}$ $\cdots \quad \tau \quad \tau + 1 \quad \cdots \quad T \quad \text{Rounds}$

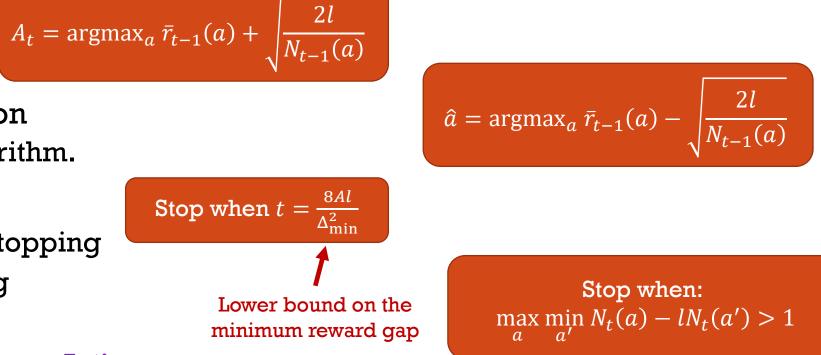
Can we design an algorithm for ROBAI? What are the fundamental limits?

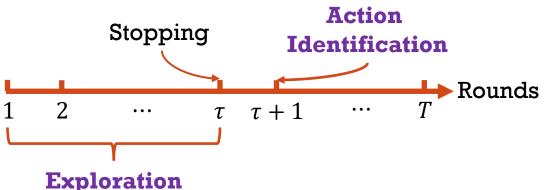
Exploration

Commitment

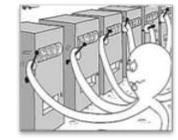
EOCP: Explore Optimistically then Commit Pessimistically

- Exploration
 - Modified-UCB.
- Action Identification
 - Modified-LCB algorithm.
- Stopping
 - Pre-determined Stopping
 - Adaptive Stopping

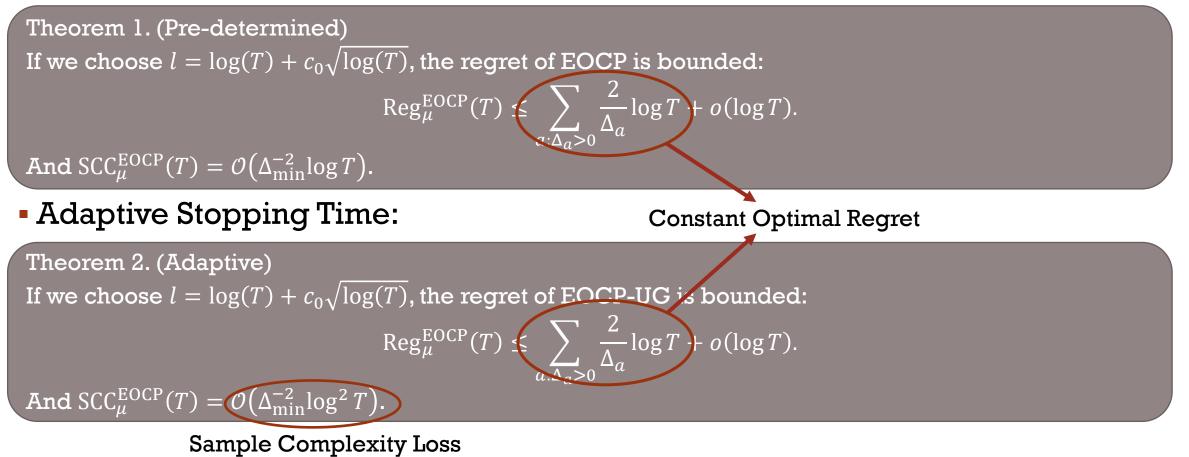




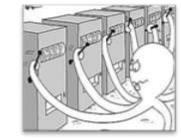
Main Results



Pre-determined Stopping Time:



Fundamentality



Commitment Time Limits for Regret Optimal Algorithms

Theorem 3 (Informal). For 2-armed Gaussian bandit, for any algorithm π with regret is $O(\log^c T)$ away from optimal, in predetermined setting:

$$\mathrm{SCC}^{\pi}_{\mu}(T) = \Omega\left(\frac{\log(T)}{\Delta^2}\right),$$

in adaptive setting:

$$\operatorname{SCC}^{\pi}_{\mu}(T) = \Omega\left(\frac{\log^{2-c}(T)}{\Delta^2}\right).$$

• EOCP matches the LB when Δ is known a priori.

Comparison to Literature

Bandit Algorithm	Regret	Sample Complexity	Confidence
UCB(Auer, et al. 2002)	$\frac{2}{\Delta}\log(T)$	Т	N/A
TS (Thompson. 1933)	$\frac{2}{\Delta}\log(T)$	Т	N/A
BAI-ETC (Garivier, et al. 2016)	$\frac{4}{\Delta}\log(T)$	$\mathcal{O}\left(\frac{\log(T)}{\Delta^2}\right)$	$\tilde{\mathcal{O}}(T^{-1})$
EOCP _(Ours)	$\frac{2}{\Delta}\log(T)$	$\mathcal{O}\left(\frac{\log(T)}{\Delta^2}\right)$	$\mathcal{O}(T^{-1})$
EOCP-UG _(Ours)	$\frac{2}{\Delta}\log(T)$	$\mathcal{O}\left(\frac{\log^2(T)}{\Delta^2}\right)$	$\mathcal{O}(T^{-1})$
KL-EOCP(Ours)	$\frac{\Delta}{\operatorname{KL}(\mu_2,\mu_1)}\log T$	$\mathcal{O}\left(\frac{\log(T)}{\operatorname{KL}(\mu_2,\mu_1)}\right)$	$\mathcal{O}(T^{-1})$
Lower Bound (Gaussian)	$\frac{2}{\Delta}\log(T)$	$\mathcal{O}\left(\frac{\log(T)}{\Delta^2}\right)$	$\mathcal{O}(T^{-1})$
Lower Bound (General)	$\frac{\Delta}{\operatorname{KL}(\mu_2,\mu_1)}\log T$	$\mathcal{O}\left(\frac{\log(T)}{\operatorname{KL}(\mu_2,\mu_1)^2}\right)$	$\mathcal{O}(T^{-1})$

Thanks! Questions?

https://arxiv.org/abs/2309.00591

