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Problem Statement

Problem: Federated optimization with:

1 Heterogeneous data

2 Partial client participation

3 Relaxed smoothness.
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Problem Statement (Federated Learning)

Federated learning McMahan et al. [2017] is a distributed learning framework empha-
sizing:

Decentralized data to maintain privacy.

Minimizing communication between clients.

Heterogeneous data.

Example: Gmail next word prediction.

How to efficiently learn from heterogeneous user data (and leverage compute from user
devices) while maintaining privacy and minimizing communication cost?
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Problem Statement (Relaxed Smoothness)

Works in nonconvex optimization commonly assume smoothness of objective function
Ghadimi and Lan [2013], Carmon et al. [2017], i.e. that the gradient is L-Lipschitz.

Zhang et al. [2020a] provide empirical evidence that
some neural networks (e.g. RNNs) do not satisfy
smoothness assumption.

They introduce a weaker assumption: ”relaxed
smoothness”, where the smoothness constant may
grow linearly with the gradient norm.

In this setting, gradient clipping significantly speeds up convergence Zhang et al. [2020a,b].
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Problem Statement

Our goal: Design an optimization algorithm for federated learning with heterogeneous
data, partial client participation, and relaxed smoothness.

Matches real-world: modern neural networks (relaxed smoothness) with real user data
(heterogeneous) and user availability (partial participation).

Previous work:

SCAFFOLD Karimireddy et al. [2020]: Heterogeneous data with smoothness.

CELGC Liu et al. [2022]: Relaxed smoothness with homogeneous data.

EPISODE Crawshaw et al. [2022]: Relaxed smoothness and heterogeneous data
with full participation.

Our algorithm, EPISODE++, solves this optimization problem under heterogeneous
data, partial participation and relaxed smoothness.
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EPISODE++ Algorithm

Two main features:

Local update corrections.

Episodic gradient clipping.
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Complexity Results

EPISODE++ is the only algorithm with guarantees in our setting.

Achieves linear speedup, reduced communication, and resilience to heterogeneity.

Recovers iteration complexity of previous work for case of full participation.
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Lower Bound for Baseline

Minibatch SGD: Classical baseline for distributed optimization Cotter et al. [2011].

Clipped Minibatch SGD: Extend to relaxed smooth setting by limiting length of
each update (i.e. apply gradient clipping).

In the centralized setting, gradient clipping avoides exploding gradients Zhang et al.
[2020a,b], i.e. the convergence rate does not depend on

M := sup {‖∇f(x)‖ | f(x) ≤ f(x0)} .

Lower bound for communication steps for Clipped Minibatch SGD (Theorem 2):

R ≥ Ω̃

(
∆L1M

ε2

)

The dependence on M shows that, in our setting, adding gradient clipping to Minibatch
SGD does not eliminate exploding gradients.
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Experimental Results

Bidirectional RNN for text classification on SNLI dataset Bowman et al. [2015].

EPISODE++ maintains superior performance as participation decreases, and as data
heterogeneity increases.

Further experiments in the paper.
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